OVERVIEW

- Task: Given a set of documents, determin grade" (A, B or C)
- Approach: Farm out to 57 3rd-year CS stude assessment of the Knowledge Technolc

Finding: Some highly successful methods pi the students had submitted them forma

A SAMPLE OF APPROACHES

Basic Approach

- Map set of abstracts into single meta-do document into features
- 2. Train a supervised model off the training
- 3. Apply the learned model to the develo

Variants on a Theme

- word/stem features (possibly indexed k vs. abstract)
- metadata
- no. documents returned
- feature weighting/selection
- different learners (k-NN, NB, NP, random
- meta-classification over the systems from
- approach problem as constraint satis code for given query as upper bound fo

Evidence Grade Classification

Timothy Baldwin (and a cast of 57)

Dept of Computer Science and Software Engineering The University of Melbourne

	MEG
ne the "evidence	•
ents as part of the ogies subject	
proposed if only ally!	
ocument, and further map the meta-	
g instances	
opment/test documents	
based on source, e.g. title vs. journal	
	Resu
n forest, SVM,)	
m a single student	
sfaction problem, interpreting SORT or SORT code for individual document	
	—

JA META-CLASSIFIER

Also played around with stackingbased meta-classification, based on all the student systems trained over the training data, and applied to both the dev and test data

Because of inconsistencies in submissions, only 23/91 systems could actually be used for metaclassification

As the meta-learner, used a support vector regression model, mapping ordinal categories onto fixed-interval real values, and discretising the results back to the ordinal categories

BASIC FINDINGS

JLTS

Methodology

Majority class baseline k-NN + stemmed words + meta-data SVM meta-classifier (words, meta-data, etc.) SVM + words + feature selection Constraint satisfaction

Mega meta-classifier

 Good feature representation with feature selection tends to do best; little gain from metadata

• The choice of learner had relatively little impact on results

 Students found the task much harder than Sarker et al. (2011) suggested

• Mega meta-classifier disappointing, partly due to alignment issues

 Slightly opaque nature OŤ queries/annotation process was slightly confusing

• Great task to get hands-on experience with language technology/machine learning (dressed up as "Knowledge Technologies")

Dev F-score	Test F-score
0.45	0.49
0.53	0.54
0.55	0.50
0.62	0.52
0.41	0.28
:	
	0.49