
Proceedings of the 2006 Australasian Language Technology Workshop (ALTW2006), pages 3–10.

Efficient Combinatory Categorial Grammar Parsing

Bojan Djordjevic and James R. Curran

School of Information Technologies

University of Sydney

NSW 2006, Australia

{bojan,james}@it.usyd.edu.au

Abstract

Efficient wide-coverage parsing is integral

to large-scale NLP applications. Unfortu-

nately, parsers for linguistically motivated

formalisms, e.g. HPSG and TAG, are often

too inefficient for these applications.

This paper describes two modifications

to the standard CKY chart parsing algo-

rithm used in the Clark and Curran (2006)

Combinatory Categorial Grammar (CCG)

parser. The first modification extends the

tight integration of the supertagger and

parser, so that individual supertags can be

added to the chart, which is then repaired

rather than rebuilt. The second modifica-

tion adds constraints to the chart that re-

strict which constituents can combine.

Parsing speed is improved by 30–35%

without a significant accuracy penalty and

a small increase in coverage when both of

these modifications are used.

1 Introduction

Parsing is the process of determining the syntactic

structure of a sentence. It is an integral part of the

deep semantic analysis that any sophisticated Nat-

ural Language Processing (NLP) system, such as

Question Answering and Information Extraction

systems, must perform.

The sentences Bob killed Alice, Alice was killed by

Bob and Bob was the man who killed Alice convey

the same information. If we treat the sentence as

a bag or sequence of words by assuming limited

structure, the sentences appear to be very differ-

ent. These examples demonstrate that full parsing

is necessary for accurate semantic interpretation.

Further, sophisticated linguistic analysis capable

of modelling a wider range of phenomena should

give us the most information.

Unfortunately, parsing is very inefficient be-

cause of the large degree of ambiguity present

in natural language. This is particularly true for

wide-coverage grammars in linguistically expres-

sive formalisms, especially those automatically

extracted from a treebank.

Many NLP systems use shallow parsing be-

cause full parsing is too slow (Grishman, 1997).

To improve the approximate structure identified

by shallow parsers, many systems use domain-

specific knowledge to extract dependencies (Gr-

ishman, 1997; Cole et al., 1997). Ciravegna et al.

(1997) show that the accuracy can be improved by

using a better parser. The ability of NLP systems to

extract useful and correct information could there-

fore be improved substantially if the speed of full

parsing was acceptable.

The C&C CCG parser (Clark and Curran, 2006)

is the fastest linguistically motivated parser in the

literature, but it is still limited to about 25 sen-

tences per second on commodity hardware.

This paper describes two modifications to the

C&C parser that significantly improve parsing ef-

ficiency without reducing accuracy or coverage.

The first involves chart repair, where the CKY

chart is repaired when new categories are added,

instead of rebuilt from scratch. This allows an

even tighter integration of the parser and supertag-

ger (described below) which results in an 11%

speed improvement over the original parser.

The second modification involves parsing with

constraints, that is, requiring certain spans to be

constituents. This reduces the search space con-

siderably by eliminating a large number of con-

stituents that cross the boundary of these spans.

The best set of constraints results in a 10% im-

provement over the original parser. These con-

straints are also useful for other tasks. Finally,

when both chart repair and constraints are used,

a 30-35% speed improvement is achieved while

coverage increases and the accuracy is unchanged.

3

The cat ate the hat that I made

NP/N N (S\NP)/NP NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> > >T

NP NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP
>

S\NP
<

S

Figure 1: A Combinatory Categorial Grammar derivation

2 Combinatory Categorial Grammar

Context free grammars (CFGs) have traditionally

been used for parsing natural language. How-

ever, some constructs in natural language require

more expressive grammars. Mildly context sensi-

tive grammars, e.g. HPSG and TAG, are powerful

enough to describe natural language but like CFGs

(Younger, 1967) are polynomial time parseable

(Vijay-Shanker and Weir, 1990).

Combinatory Categorial Grammar (CCG) is an-

other mildy context sensitive grammar (Steedman,

2000) that has significant advantages over CFGs,

especially for analysing constructions involving

coordination and long range dependencies. Con-

sider the following sentence:

Give a teacher an apple and a policeman a flower.

There are local dependencies between give and

teacher, and between give and apple. The addi-

tional dependencies between give, and policeman

and flower are long range, but are extracted easily

using CCG. a policeman a flower is a non-standard

constituent that CCG deals with very elegantly, al-

lowing a teacher an apple and a policeman a flower to

be coordinated before attachment to the verb give.

In CCG each word is assigned a category which

encodes sub-categorisation information. Cate-

gories are either atomic, such as N , NP and S for

noun, noun phrase or sentence; or complex, such

as NP/N for a word that combines with a noun

on the right to form a noun phrase. NP\N is sim-

ilarly a word that combines with a noun on the left

to create an NP . The categories are then com-

bined using combinatory rules such as forward ap-

plication > (X/Y Y ⇒ X) and forward compo-

sition >B (X/Y Y/Z ⇒B X/Z).

An example derivation that uses a number of

combination rules is shown in Figure 1. The exam-

ple demonstrates how CCG handles long range de-

pendencies such as the hat . . . I made. Type raising

(>T) and forward composition (>B) on I made are

used to derive the same predicate-argument struc-

ture as if it was written as I made the hat.

A derivation creates predicate-argument depen-

dencies, which are 5-tuples 〈hf , f, s, ha, l〉, where

hf is the word of the category representing the re-

lationship, f is the category itself, s is the argu-

ment slot, ha is the head word of the argument and

l indicates if the dependency is local.

The argument slot is used to identify the

different arguments of words like bet in [Alice]1 bet

[Bob]2 [five dollars]3 [that they win]4. The dependency

between bet and Bob would be represented as

〈bet, (((S\NP1)/NP2)/NP3)/S[em]4, 2, Bob,−〉.
The C&C parser is evaluated by comparing ex-

tracted dependencies against the gold standard.

Derivations are not compared directly because

different derivations can produce the same

dependency structure.

The parser is trained on CCGbank, a version of

Penn Treebank translated semi-automatically into

CCG derivations and predicate-argument depen-

dencies (Hockenmaier and Steedman, 2006). The

resulting corpus contains 99.4% of the sentences

in the Penn Treebank. Hockenmaier and Steed-

man also describe how a large CCG grammar can

be extracted from CCGbank. A grammar automat-

ically extracted from CCGbank is used in the C&C

parser and supertagger.

3 C&C CCG Parser

The C&C parser takes one or more syntactic struc-

tures (categories) assigned to each word and at-

tempts to build a spanning analysis of the sen-

tence. Typically every category that a word was

seen with in the training data is assigned.

4

Supertagging (Bangalore and Joshi, 1999) was

introduced for Lexicalized Tree Adjoining Gram-

mar (LTAG) as a way of assigning fewer categories

to each word thus reducing the search space of the

parser and improving parser efficiency.

Clark (2002) introduced supertagging for CCG

parsing. The supertagger used in the C&C parser is

a maximum entropy (Berger et al., 1996) sequence

tagger that uses words and part of speech (POS)

tags in a five word window as features. The label

set consists of approximately 500 categories (or

supertags) so the task is significantly harder than

other NLP sequence tagging tasks.

The supertagger assigns one or more possible

categories to each word together with the proba-

bility for each of the guesses. Clark and Curran

(2004) discovered that initially assigning a very

small number of categories per word and then at-

tempting to parse was not only faster but more

accurate than assigning many categories. If no

spanning analysis could be found the parser re-

quested more categories from the supertagger, and

the parsing process was repeated until the number

of attempts exceeded a limit (typically 5 levels of

supertagger ambiguity). This tight integration of

the supertagger and the parser resulted in state of

the art accuracy and a massive improvement in ef-

ficiency, reaching up to 25 sentences a second.

Up until now, when a spanning analysis was

not found the chart was destroyed, then extra cat-

egories are assigned to each word, and the chart

is built again from scratch. However the chart re-

building process is very wasteful because the new

chart is always a superset of the previous one and

could be created by just updating the old chart in-

stead of rebuilding it.

This has limited how small the initial ambiguity

levels can be set and thus how closely the parser

and supertagger can interact. The first modifica-

tion we describe below is to implement chart re-

pair which allows additional categories to be as-

signed to an existing chart and the CKY algorithm

to run efficiently over just the modified section.

4 Chart Parsing

Given a sentence of n words, we define position

pos ∈ {0, . . . , n− 1} to be the starting position of

a span (contiguous sequence of words), and span,

its size. So the hat in the cat ate the hat would

have pos = 3 and span = 2. Each span can be

parsed in a number of ways so a set of deriva-

tions will be created for each valid (pos, span)
pair. Let (pos, span) represent this set of deriva-

tions. Then, the derivations for (pos, span) will be

combinations of derivations in (pos, k) and (pos+
k, span − k) for all k ∈ {1, . . . , span − 1}. The

naı̈ve way to parse a sentence using these defini-

tions is to find the derivations that span the whole

sentence (0, n) by recursively finding derivations

in (0, k) and (k, n − k) for all k ∈ {1, . . . , n −
1}. However, this evaluates derivations for each

(pos, span) pair multiple times, making the time

complexity exponential in n.

To make the algorithm polynomial time, dy-

namic programming can be used by storing the

derivations for each (pos, span) when they are

evaluated, and then reusing the stored values. The

chart data structure is used to store the deriva-

tions. The chart is a two dimensional array in-

dexed by pos and span. The valid pairs corre-

spond to pos + span ≤ n, that is, to spans that

do not extend beyond the end of the sentence.

The squares represent valid cells in Figure 2. The

location of cell(3, 4) is marked with a diamond.

cell(3, 4) stores the derivations whose yield is the

four word sequence indicated.

The CKY (also called CYK or Cocke-Younger-

Kasami) algorithm used in the C&C parser has an

O(n3) worst case time complexity. Sikkel and

Nijholt (1997) give a formal description of CKY

(Younger, 1967) and similar parsing algorithms,

such as the Earley parser (Earley, 1970).

The CKY algorithm is a bottom up algorithm

and works by combining adjacent words to give

a span of size two (second row from the bottom in

Figure 2). It then combines adjacent spans in the

first two rows to create all allowable spans of size

three in the row above. This process is continued

until a phrase that spans the whole sentence (top

row) is reached.

The (lexical) categories in the bottom row (on

the lexical items themselves) are assigned by the

supertagger (Clark and Curran, 2004). The num-

ber of categories assigned to each word can be

varied dynamically. Assigning a small number of

categories (i.e. keeping the level of lexical cate-

gory ambiguity low) increases the parsing speed

significantly but does not always produce a span-

ning derivation. The original C&C parser uses a

small number of categories first, and if no span-

ning tree is found the process is repeated with a

larger number of categories.

5

Figure 2: Cells affected by adding a constraint. The axes are the cell indices in the chart with pos the

starting position, and span the length of the span, of constituents in the cell.

5 Constraints

The original C&C parser uses a supertagger to as-

sign a number of categories to each word, together

with the probability of each category (Clark and

Curran, 2004). In the first iteration, only cate-

gories with β ≥ 0.075 are used, where β is the ra-

tio of the probability of the category and the proba-

bility of the most likely category for that word. For

example, if the categories for dog are N , NP and

N/N with probabilities 0.8, 0.12 and 0.08 then β
value of N/N is 0.08/0.8 = 0.1. If there is no

spanning tree, a lower value is used for the cutoff β
in the next iteration so that more tags are assigned

to each word. The previous chart is destroyed and

the new chart is built from scratch. Since the as-

signed categories are always a superset of the pre-

viously assigned ones, the derivations in the new

chart will include all the derivations in the previ-

ous chart.

Instead of rebuilding the chart when new cate-

gories are added it can be simply repaired by mod-

ifying cells that are affected by the new tags. Con-

sidering the case where a single tag is added to

the ith word in an n word sentence, the new tag

can only affect the cells that satisfy pos ≤ i and

pos + span > i. These cells are shown in Figure

3. The chart can therefore be repaired bottom up

by updating a third of the cells on average.

The number of affected cells is (n− pos)× pos

and the total number of cells is approximately n2

2
.

The average number of affected cells is approxi-

mately 1

n

∫ n
0

(n − p)p dp = n2

6
, so on average a

third of the cells are affected.

The chart is repaired bottom up. A new cate-

gory is added to one word by adding it to the list

of categories in the appropriate cell in the bottom

row. The list is marked so that we know which

categories are new. For each cell C in the second

row we look for each pair of cells A and B whose

spans combine to create the span of C. In the orig-

inal algorithm all categories from A are combined

with all categories from B, but during the repair

this is only done if at least one of them is new be-

cause otherwise the resulting category would al-

ready be in C. Again the list of categories in C
is marked so that cells higher in the chart know

which categories are new. This is repeated for all

affected cells.

This speeds up the parser not only because pre-

vious computations are reused, but also because

categories can be added one at a time until a span-

ning derivation is found. This increases coverage

slightly because the number of categories can be

varied one by one. In the original parser it was

possible to have sentences that a spanning tree

cannot be found for using for example 20 cate-

gories, but increasing the number of categories to

25 causes the total number of derivations in the

chart to exceed a predefined limit, so the sentence

does not get parsed even if 23 categories would

produce a spanning tree without exceeding the

limit.

6

Figure 3: Cells affected by chart repair.

6 Chart Repair

Adding constraints to the parser was originally de-

signed to enable more efficient manual annotation.

The parser has been used for semi-automatic pars-

ing of sentences to create gold standard deriva-

tions. It is used to produce a guess, which is then

manually corrected. Adding a constraint could

speed this process up by allowing annotators to

quickly tell the parser which part it got wrong.

For example if the Royal Air Force contract was

parsed as (the Royal (Air Force contract)), meaning

that the Air Force contract was royal, instead of

manually annotating the category for each word

the annotator could simply create a constraint on

Royal Air Force requiring it to be a constituent, and

thus making the previous derivation impossible.

The correct derivation, (the ((Royal Air Force) con-

tract)) would then very likely be produced without

further effort from the annotator.

However, parsing would be much faster in gen-

eral if the search space could be constrained by re-

quiring known spans P to be a single constituent.

This reduces the search space because P must be

the yield of a single cell CP (posP , spanP), so the

cells with yields that cross the boundary of P do

not need to be considered at all (grey squares in

Figure 2). The problem of what spans are known

in advance is described below.

In addition, if a cell contains P as a prefix or

suffix (wavy pattern cells in Figure 2) then it also

has constraints on how it can be created. In Fig-

ure 2, P = cell(3, 4) is required, i.e. the span

starting at word 3 of length 4 containing words 3,

4, 5 and 6 is a constituent. Consider cell(3, 7). It

includes words 3 to 9 and contains P as the pre-

fix. Normally cell(3, 7) can be created by com-

bining cell(3, 1) with cell(4, 6), . . . , cell(pos, s)
with cell(pos + s, span − s), . . . , and cell(3, 6)
with cell(9, 1). However the first three of these

combinations are not allowed because the second

component would cross the boundary of P . This

gives a lower limit for the span of the left compo-

nent. Similarly if P is the suffix of the span of a

cell then there is a lower limit on the span of the

right component.

This eliminates a lot of work during parsing and

can provide a significant speed increase. In the

quick brown foxes like dogs, the following phrases

would all be possible constituents: foxes like dogs,

brown foxes like dogs, . . . , and the quick brown foxes

like dogs. Since the chart is built bottom up the

parser has no knowledge of the surrounding words

so each of those appears like a valid constituent

and would need to be created. However if the quick

brown foxes is known to be a constituent then only

the last option becomes possible.

7 Creating Constraints

How can we know that specific spans must be

yielded by constituents in advance? Surely the

parsing is already solved if we have this informa-

tion? In this paper, we have experimented with

constraints determined from shallow parsing and

hints in the sentence itself.

Chunk tags (gold standard and from the C&C

chunker) were used to create constraints. Only NPs

7

were used because the accuracy for other chunks

is low. The chunks required modification because

the Penn Treebank has different analyses to CCG-

bank, e.g. Larry’s dog is chunked as [Larry]NP [’s

dog]NP, which is different to the CCGbank analy-

sis. Adjacent NPs of this form are concatenated.

A number of punctuation constraints were used

and had a significant impact especially for longer

sentences. The punctuation rules in CCGbank are

very productive. For example the final punctua-

tion in The dog ate a bone. will create all of these

constituents: bone., a bone., . . . , The dog ate a bone.

However, in CCGbank the sentence final punctu-

ation is always attached at the root. A constraint

on the the first n− 1 words was added to force the

parser to only attach the sentence final punctuation

once the rest of the sentence has been parsed.

Constraints are also placed on parenthesised ex-

pressions. In The dog (a hungry Pomeranian) ate a

bone, the phrase a hungry Pomeranian clearly needs

to be parsed first and then attached to the rest of

the sentence. However, CCGbank would allow the

right parenthesis to be absorbed by Pomeranian be-

fore hungry is attached. The same would apply to

quoted expressions but CCGbank has removed the

quotation marks. However, the parser must still

deal with quoted expressions in practical systems.

Finally constraints are placed on phrases

bounded by semicolons, colons and hyphens. This

is especially useful with longer sentences of the

form Alice paid $5; Bob paid $6; . . . , where many

clauses are separated by semicolons. This reduces

the sentence to a number of smaller units which

significantly improves parsing efficiency.

If the parser cannot parse the sentence with con-

straints then they are removed and the sentence is

parsed again. This increases the coverage because

the reduced search space means that longer sen-

tences can be parsed without exceeding the mem-

ory or time limit. However if the constraint accu-

racy is low a large number of sentences will need

to be parsed twice which would cancel out any-

thing gained from using them.

8 Experiments

The parser is trained on CCGbank sections 02-21,

with section 00 being used for development. The

performance is measured in terms of coverage, ac-

curacy and parsing time. The time reported in-

cludes loading the grammar and statistical model,

which is ∼5 seconds, and parsing the 1913 sen-

tences in section 00. Accuracy is measured in

terms of the dependency F-score.

The failure rate (the opposite of coverage) is

broken down into sentences with length up to 40

and with length over 40 because the longer sen-

tences are the most problematic ones and the orig-

inal parser already has high coverage on sentences

with up to 40 words. There are 1784 1-40 word

sentences and 129 41+ word sentences. The aver-

age length and standard deviation in 41+ are 50.8

and 31.5 respectively.

All experiments used gold standard POS tags.

Some experiments use gold standard chunks to de-

termine an upper bound on the utility of chunk

constraints. Original and Original+repair do not

use any constraints. NP(gold) indicates that gold

standard noun phrase constraints are used. NP

uses the C&C chunker, and punctuation adds punc-

tuation constraints. The times reported for NP (us-

ing the C&C chunker) include the time to load the

chunker model (∼1.3 seconds).

Finally the best performing system was com-

pared against the original on section 23, which has

2257 sentences of length 1-40 and 153 of length

41+. The maximum sentence length is only 65,

which explains the high coverage for the 41+ sec-

tion.

9 Results

The results in Table 1 show that using gold stan-

dard noun phrases does not improve efficiency,

while using noun phrases identified by the chun-

ker decreases speed by 10.8%. This is not sur-

prising because the chunk data was not obtained

from CCGbank and the chunker is not very ac-

curate. Some frequent problems were fixed in

a preprocessing step as explained in Section 5,

but there could be less frequent constructions that

cause problems. A more detailed analysis of these

constructions is required.

Chart repair (without constraints) gave an

11.1% improvement in speed and 0.21% improve-

ment in accuracy. The accuracy was improved

because of the way the repair process adds new

categories. Categories are added in decreasing or-

der of probability and parsing stops once a span-

ning tree is found. This effectively allows the

parser to use the probabilities which the supertag-

ger assigns, which are not directly modelled in the

parser. Once supertagger probabilities are added

to the parser statistical model there should be no

8

TIME ACC COVER FAIL RATE %

secs % % % n ≤ 40 n > 40

Original 88.3 — 86.54 98.85 0.392 11.63

punctuation 79.1 10.4 86.56 99.22 0.168 9.30

NP(gold) 88.4 -0.1 86.27 99.06 0.224 10.85

NP 97.8 -10.8 86.31 99.16 0.224 9.30

NP(gold) + punctuation 69.8 20.5 86.24 99.27 0.168 8.53

NP + punctuation 97.0 -9.9 86.31 99.16 0.168 10.08

Original + repair 78.5 11.1 86.75 99.01 0.336 10.08

NP(gold) + repair 65.0 26.4 86.04 99.37 0.224 6.20

NP + repair 77.5 12.2 86.35 99.37 0.224 6.20

punctuation + repair 57.2 35.2 86.61 99.48 0.168 5.43

NP(gold) + punctuation + repair 48.2 45.4 86.14 99.48 0.168 5.43

NP + punctuation + repair 63.2 28.4 86.43 99.53 0.163 3.88

Table 1: Parsing performance on section 00 with constraints and chart repair.

accuracy difference between the original method

and chart repair.

The best results for parsing with constraints

(without repair) were with gold standard noun

phrase and punctuation constraints, with 20.5%

improvement in speed and 0.42% in coverage. In

that case, however the accuracy decreases by 0.3%

which is again possibly because CCG constituents

do not match up with the chunks every time. The

best results obtained without a decrease in accu-

racy is using only punctuation constraints, with

10.4% increase in speed and 0.37% in coverage.

The best overall result was obtained when gold

standard noun phrase and punctuation constraints

were used with chart repair, with a 45.4% im-

provement in speed and 0.63% in coverage, and

a 0.4% drop in accuracy. Again the best results

without a drop in accuracy were with only punc-

tuation constraints and chart repair, with improve-

ments of 35.2% and 0.63%.

The results also show that coverage of both

short and long sentences is improved using these

methods. For example the best results show a

43% and 67% decrease in failure rate for sentence

lengths in the ranges 1-40 and 41+.

Comparing the last three rows allows us to

guess how accurate the chunker will need to be

to achieve a faster speed than just using punctua-

tion constraints. Noun phrases clearly have an im-

pact on speed because using gold standard chunks

gives a significant improvement, however the C&C

chunker is currently not accurate enough. The

chunker would need to have about half the error

rate it currently has in order to be useful.

Table 2 shows the performance of the punctu-

ation constraints and chart repair system on sec-

tion 23. The results are consistent with previous

results, showing a 30.9% improvement in speed

and 0.29% in coverage, with accuracy staying at

roughly the same level.

10 Future Work

A detailed analysis of where NPs chunks do not

match the CCG constituents is required if NPs are

to be used as constraints. The results show that

NPs can provide a large improvement in efficiency

if identified with sufficient precision.

The chart repair has allowed an even greater

level of integration of the supertagger and parser.

We intend to explore strategies for determining

which category to add next if a parse fails.

Constraints and chart repair both manipulate the

chart for more efficient parsing. Other methods of

chart manipulation for pruning the search space

will be investigated. Agenda based parsing, in

particular A* parsing (Klein and Manning, 2003),

will be implemented in the C&C parser, which will

allow only the most probable parts of the chart to

be built, improving efficiency while guaranteeing

the optimal derivation is found.

11 Conclusion

We have introduced two modifications to CKY

parsing for CCG that significantly increase pars-

ing efficiency without an accuracy or coverage

penalty.

Chart repair improves efficiency by reusing

the partial CKY chart from the previous parse at-

9

TIME ACC COVER FAIL RATE %

secs % % % n ≤ 40 n > 40

Original 91.9 — 86.92 99.29 0.621 1.961

punctuation + repair 63.5 30.9 86.89 99.58 0.399 0.654

Table 2: Parsing performance on Section 23 with constraints and chart repair.

tempts. This allows us to further exploit the tight

integration of the supertagger and parser by adding

one lexical category at a time until a parse of the

sentence is found. Chart repair alone gives an 11%

improvement in speed.

Constraints improve efficiency by avoiding the

construction of sub-derivations that will not be

used. They have a significant impact on parsing

speed and coverage without reducing the accuracy,

provided the constraints are identified with suffi-

cient precision.

When both methods are used the speed in-

creases by 30-35%, the failure rate decreases

by 40-65%, both for sentences of length 1-40

and 41+, while the accuracy is not decreased.

The result is an even faster state-of-the-art wide-

coverage CCG parser.

12 Acknowledgments

We would like to thank the anonymous reviewers

for their feedback. This research was funded un-

der Australian Research Council Discovery grants

DP0453131 and DP0665973.

References

Srinivas Bangalore and Aravind Joshi. 1999. Supertagging:
An approach to almost parsing. Computational Linguis-
tics, 25(2):237–265.

Adam L. Berger, Stephen Della Pietra, and Vincent J. Della
Pietra. 1996. A maximum entropy approach to nat-
ural language processing. Computational Linguistics,
22(1):39–71.

Fabio Ciravegna, Alberto Lavelli, and Giorgio Satta. 1997.
Efficient full parsing for Information Extraction. In Pro-
ceedings of the Meeting of the Working Groups on Auto-
matic Learning and Natural Language of the Associazione
Italiana per l’Intelligenza Artificale (AI*IA), Turin, Italy.

Stephen Clark and James R. Curran. 2004. The importance
of supertagging for wide-coverage CCG parsing. In 20th
International Conference on Computational Linguistics,
pages 282–288, Geneva, Switzerland.

Stephen Clark and James R. Curran. 2006. Wide-coverage
statistical parsing with CCG and log-linear models. (sub-
mitted).

Stephen Clark. 2002. A supertagger for Combinatory Cate-
gorial Grammar. In Proceedings of the TAG+ Workshop,
pages 19–24, Venice, Italy.

Ronald Cole, Joseph Mariani, Hans Uszkoreit, Annie Zae-
nen, and Victor Zue. 1997. Survey of the state of the
art in human language technology. Cambridge University
Press, New York, NY, USA.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

Ralph Grishman. 1997. Information Extraction: Tech-
niques and challenges. In SCIE ’97: International Sum-
mer School on Information Extraction, pages 10–27, Lon-
don, UK. Springer-Verlag.

Julia Hockenmaier and Mark Steedman. 2006. CCGbank
- a corpus of CCG derivations and dependency structures
extracted from the Penn Treebank. (submitted).

Dan Klein and Christopher D. Manning. 2003. A* pars-
ing: Fast exact Viterbi parse selection. In Proceedings
of Human Language Technology and the North American
Chapter of the Association for Computational Linguistics
Conference, pages 119–126, Edmond, Canada.

Klass Sikkel and Anton Nijholt. 1997. Parsing of Context-
Free languages. In Grzegorz Rozenberg and Arto Sa-
lomaa, editors, Handbook of Formal Languages, Volume
2: Linear Modelling: Background and Application, pages
61–100. Springer-Verlag, New York.

Mark Steedman. 2000. The Syntactic Process. The MIT
Press, Cambridge, MA.

K. Vijay-Shanker and David J. Weir. 1990. Polynomial time
parsing of combinatory categorial grammars. In Proceed-
ings of the 28th Annual Meeting on Association for Com-
putational Linguistics, pages 1–8, Pittsburgh, Pennsylva-
nia.

Daniel H. Younger. 1967. Recognition and parsing of
contex-free languages in time n

3. Information and Con-
trol, 10(2):189–208.

10

