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Abstract

We present a system for named entity
recognition (ner) in astronomy jour-
nal articles. We have developed this
system on a ne corpus comprising ap-
proximately 200,000 words of text from
astronomy articles. These have been
manually annotated with ∼40 entity
types of interest to astronomers.

We report on the challenges involved
in extracting the corpus, defining en-
tity classes and annotating scientific
text. We investigate which features of
an existing state-of-the-art Maximum
Entropy approach perform well on as-
tronomy text. Our system achieves an
F-score of 87.8%.

1 Introduction

Named entity recognition (ner) involves as-
signing broad semantic categories to entity ref-
erences in text. While many of these cate-
gories do in fact refer to named entities, e.g.
person and location, others are not proper
nouns, e.g. date and money. However, they
are all syntactically and/or semantically dis-
tinct and play a key role in Information Ex-
traction (ie). ner is also a key component of
Question Answering (qa) systems (Hirschman
and Gaizauskas, 2001). State-of-the-art qa
systems often have custom-built ner compo-
nents with finer-grained categories than exist-
ing corpora (Harabagiu et al., 2000). For ie
and qa systems, generalising entity references
to broad semantic categories allows shallow ex-
traction techniques to identify entities of inter-
est and the relationships between them.

Another recent trend is to move beyond the
traditional domain of newspaper text to other

corpora. In particular, there is increasing in-
terest in extracting information from scientific
documents, such as journal articles, especially
in biomedicine (Hirschman et al., 2002).

A key step in this process is understanding
the entities of interest to scientists and build-
ing models to identify them in text. Unfor-
tunately, existing models of language perform
very badly on scientific text even for the cate-
gories which map directly between science and
newswire, e.g. person. Scientific entities of-
ten have more distinctive orthographic struc-
ture which is not exploited by existing models.

In this work we identify entities within as-
tronomical journal articles. The astronomy
domain has several advantages: firstly, it is
representative of the physical sciences; sec-
ondly, the majority of papers are freely avail-
able in a format that is relatively easy to ma-
nipulate (LATEX); thirdly, there are many in-
teresting entity types to consider annotating;
finally, there are many databases of astronom-
ical objects that we will eventually exploit as
gazetteer information.

After reviewing comparable named entity
corpora, we discuss aspects of astronomy that
make it challenging for nlp. We then describe
the corpus collection and extraction process,
define the named entity categories and present
some examples of interesting cases of ambigu-
ity that come up in astronomical text.

Finally, we describe experiments with re-
training an existing Maximum Entropy tag-
ger for astronomical named entities. Interest-
ingly, some feature types that work well for
newswire significantly degrade accuracy here.
We also use the tagger to detect errors and
inconsistencies in the annotated corpus. We
plan to develop a much larger freely available
astronomy ne corpus based on our experience
described here.
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2 Existing annotated corpora

Much of the development in ner has been
driven by the corpora available for training
and evaluating such systems. This is because
the state-of-the-art systems rely on statistical
machine learning approaches.

2.1 Message Understanding Conference

The muc named entity recognition task (in
muc 6/7) covered three types of entities:

names person, location, organisation;

temporal expressions date, time;

numeric expressions money, percent.

The distribution of these types in muc 6 was:
names 82%, temporal 10% and numeric 8%,
and in muc 7 was: names 67%, temporal 25%
and numeric 6%.

The raw text for the muc 6 ner corpus
consisted of 30 Wall Street Journal articles,
provided by the Linguistic Data Consortium
(ldc). The text used for the English ner task
in muc 7 was from the New York Times News
Service, also from the ldc. There are detailed
annotation guidelines available.1

2.2 GENIA corpus

The genia corpus (Kim et al., 2003) is a col-
lection of 2000 abstracts from the National Li-
brary of Medicine’s medline database. The
abstracts have been selected from search re-
sults for the keywords human, blood cells and
transcription factors. genia is annotated with
a combination of part of speech (pos) tags
based on the Penn Treebank set (Marcus et
al., 1994) and a set of biomedical named en-
tities described in the genia ontology. One
interesting aspect of the genia corpus is that
some named entities are syntactically nested.
However, most statistical ner systems are se-
quence taggers which cannot easily represent
hierarchical tagging.

2.3 Astronomy Bootstrapping Corpus

The Astronomy Bootstrapping Corpus
(Becker et al., 2005; Hachey et al., 2005) is
a small corpus consisting of 209 abstracts
from the nasa Astronomical Data System
Archive. The corpus was developed as part

1www.cs.nyu.edu/cs/faculty/grishman/muc6.html

of experiments into efficient methods for
developing new statistical models for ner.
The abstracts were selected using the query
quasar + line from articles published between
1997 and 2003. The corpus was annotated
with the following named entity types:

1. instrument name (136 instances)

2. source name (111 instances)

3. source type (499 instances)

4. spectral feature (321 instances)

The seed and test sets (50 and 159 abstracts)
were annotated by two astronomy PhD stu-
dents. The abstracts contained on average
10 sentences with an average length of 30 to-
kens, implying an tag density (the percentage
of words tagged as a named entity) of ∼ 2%.

3 NLP for astronomy

Astronomy is a broad scientific domain com-
bining theoretical, observational and compu-
tational research, which all differ in conven-
tions and jargon. We are interested in ner for
astronomy within a larger project to improve
information access for scientists.

There are several comprehensive text and
scientific databases for astronomy. For exam-
ple, nasa Astrophysics Data System (ADS,
2005) is a bibliographic database containing
over 4 million records (journal articles, books,
etc) covering the areas of astronomy and as-
trophysics, instrumentation, physics and geo-
physics. ads links to various external re-
sources such as electronic articles, data cat-
alogues and archives.

3.1 iau naming conventions

The naming of astronomical objects is speci-
fied by the International Astronomical Union’s
(iau) Commission 5, so as to minimise con-
fusing or overlapping designations in the as-
tronomical literature. The most common for-
mat for object names is a catalogue code fol-
lowed by an abbreviated position (Lortet et
al., 1994). Many objects still have common
or historical names (e.g. the Crab Nebula). An
object that occurs in multiple catalogues will
have a separate name in each catalogue (e.g.
PKS 0531+21 and NGC 1952 for the Crab Nebula).
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1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

2 90 218 421 1909 3221 4320 5097 5869 6361 6556 7367 7732 3495

Table 1: Number of LATEX astro-ph articles extracted for each year.

3.2 The Virtual Observatory

There is a major effort in astronomy to move
towards integrated databases, software and
telescopes. The umbrella organisation for this
is the International Virtual Observatory Al-

liance (Hanisch and Quinn, 2005). One of the
aims is to develop a complete ontology for as-
tronomical data which will be used for Unified
Content Descriptors (Martinez et al., 2005).

4 Collecting the raw corpus

The process of collecting the raw text for
named entity annotation involved first obtain-
ing astronomy text, extracting the raw text
from the document formatting and splitting it
into sentences and tokens.

4.1 arXiv

arXiv (arXiv, 2005) is an automated distri-
bution system for research articles, started in
1991 at the Los Alamos National Laboratory
to provide physicists with access to prepublica-
tion materials. It rapidly expanded to incorpo-
rate many domains of physics and thousands
of users internationally (Ginsparg, 2001).

The astrophysics section (astro-ph) is used
by most astronomers to distribute papers be-
fore or after publication in a recognised jour-
nal. It contains most of astrophysics publica-
tions from the last five to ten years. Table 1
shows that the number of articles submitted
to astro-ph has increased rapidly since 1995.

The articles are mostly typeset in LATEX.
We have downloaded 52 658 articles from
astro-ph, totalling approximately 180 million
words. In creating the ne corpus we limited
ourselves to articles published since 2000, as
earlier years had irregular LATEX usage.

4.2 LATEX conversion

After collecting of LATEX documents, the next
step was to extract the text so that it could be
processed using standard nlp tools. This nor-
mally involves ignoring most formatting and
special characters in the documents.

However formatting and special characters
play a major role in scientific documents, in
the form of mathematical expressions, which
are interspersed through the text. It is impos-
sible to ignore every non-alphanumeric char-
acter or or map them back to some standard
token because too much information is lost.
Existing tools such as DeTeX (Trinkle, 2002)
remove LATEX markup including the mathe-
matics, rendering scientific text nonsensical.
Keeping the LATEX markup is also problem-
atic since the tagger’s morphological features
are confused by the markup.

4.3 LATEX to Unicode

Our solution was to render as much of the
LATEX as possible in text, using Unicode (Uni-
code Consortium, 2005) to represent the math-
ematics as faithfully as possible. Unicode has
excellent support for mathematical symbols
and characters, including the Greek letters,
operators and various accents.

Mapping LATEX back to the corresponding
Unicode character is difficult. For example,
\acirc, \^{a} and \hat{a} are all used to
produce â, which in Unicode is 0x0174.

Several systems attempt to convert LATEX
to other formats e.g. xml (Grimm, 2003).
No existing system rendered the mathemat-
ics faithfully enough or with high enough cov-
erage for our purposes. Currently our cover-
age of mathematics is very good but there are
still some expressions that cannot be trans-
lated, e.g. complex nested expressions, rare
symbols and non-Latin/Greek/Hebrew alpha-
betic characters.

4.4 Sentences and Tokenisation

We used MXTerminator (Reynar and Ratna-
parkhi, 1997) as the sentence boundary de-
tector with an additional Python script to fix
common errors, e.g. mistaken boundaries on
Sect. and et al. We used the Penn Treebank
(Marcus et al., 1994) sed script to tokenize the
text, again with a Python script to fix common
errors, e.g. splitting numbers like 1,000 on the
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Our FUSE|tel spectrum of HD|sta 73882|sta is derived from time-tagged observations over the
course of 8 orbits on 1999|dat Oct|dat 30|dat . Several “ burst ” events occurred during the
observation ( Sahnow|per et al. 2000|dat ) . We excluded all photon|part events that occurred
during the bursts , reducing effective on-target integration time from 16.8|dur ksec|dur to 16.1|dur
ksec|dur . Strong interstellar extinction and lack of co-alignment of the SiC channels with the LiF
channels prevented the collection of useful data shortward of 1010|wav Å|wav .

Figure 1: An extract from our final corpus, originally from astro-ph/0005090.

comma, and reattaching the LATEX which the
tokenizer split off incorrectly.

4.5 The Corpus

The articles for the corpus were selected ran-
domly from the downloaded LATEX documents
and annotated by the second author. The an-
notation was performed using a custom Emacs
mode which provided syntax highlighting for
named entity types and mapped the keys to
specific named entities to make the annotation
as fast as possible. The average annotation
speed was 165 tokens per minute. An extract
from our corpus is shown in Figure 1. There
are a total of 7840 sentences in our corpus,
with an average of 26.1 tokens per sentence.

5 Named Entity Categories

Examples of the categories we used are listed
in Table 2. We restricted ourselves to high
level categories such as star and galaxy
rather than detailed ones typically used by as-
tronomers to classify objects such as red giant

and elliptical galaxy.

5.1 Areas of Ambiguity

There were some entities that did not clearly
fit into one specific category or are used in a
way that is ambiguous. This section outlines
some of these cases.

Temperature and Energy Due to the
high temperatures in X-ray astronomy, tem-
peratures are conventionally referred to in
units of energy (eV), for example:

its 1 MeV temperature, the emission from...

Our annotation stays consistent to the units,
so these cases are tagged as energies (egy).

Angular distance Astronomers commonly
refer to angular distances on the sky (in units
of arc) because it is not possible to know

the true distance between two objects with-
out knowing their redshift. We annotate these
according to the units, i.e. angles, although
they are often used in place of distances.

Spectral lines and ions Absorption or
emission of radiation by ions results in spec-

tral line features in measured spectra. Com-
mon transitions have specific names (e.g. Hα)
whereas others are referred to by the ion name
(e.g. Si IV), introducing ambiguity.

5.2 Comparison with genia and muc

The corpus has a named entity density of 5.4%
of tokens. This is significantly higher than
the density of the Astronomy Bootstrapping
Corpus. The most frequency named entities
types are: per (1477 tags), dat (1053 tags),
tel (867 tags), gal (551 tags), and wav (451
tags). The token 10 has the highest degree of
ambiguity since it was tagged with every unit
related tag: egy, mass, etc. and also as obj.

By comparison the genia corpus has a much
higher density of 33.8% tokens on a sample
the same size as our corpus. The highest fre-
quency named entity types are: other (16171
tags), protein (13197 tags), dna domain
(6848 tags) and protein family (6711 tags).

The density of tags in muc is 11.8%, higher
than our corpus but much lower than genia.
The highest frequency named entities are or-
ganisation (6373 tags), followed by loca-
tion (3828 tags) and date (3672 tags). Ta-
ble 3 gives a statistical comparison of the three
corpora. This data suggests that the astron-
omy data will be harder to automatically tag
than muc 7 because the density is lower and
there are many more classes. However, if there
were more classes or finer grained distinctions
in muc this would not necessarily be true. It
also demonstrates how different biological text
is to other scientific domains.

62



Class Definition Examples Comments

gxy galaxy NGC 4625; Milky Way; Galaxy inc. black holes
neb nebula Crab Nebula; Trapezium
sta star Mira A; PSR 0329+54; Sun inc. pulsars
stac star cluster M22; Palomar 13
supa supernova SN1987A; SN1998bw
pnt planet Earth; Mars ; HD 11768 b; tau Boo inc. extra-solar planets
frq frequency 10 Hz; 1.4 GHz
dur duration 13 seconds; a few years inc. ages
lum luminosity 1046 ergs−1; 1010L� inc. flux
pos position 17:45.6; -18:35:31; 17h12m13s

tel telescope ATCA; Chandra X-ray observatory inc. satellites
ion ion Si IV; HCO+ inc. molecular ions
sur survey SUMSS; 2 Micron All-Sky Survey
dat date 2003; June 17; 31st of August inc. epochs (e.g. 2002.7)

Table 2: Example entity categories.

Corpus astro genia muc

# cats 43 36 8
# entities 10 744 40 548 11 568
# tagged 16,016 69 057 19 056
# avg len 1.49 1.70 1.64
tag density 5.4% 33.8% 11.8%

Table 3: Comparison with genia and muc.

Condition Contextual predicate

f(wi) < 5 X is prefix of wi, |X| ≤ 4
X is suffix of wi, |X| ≤ 4
wi contains a digit
wi contains uppercase character
wi contains a hyphen

∀wi wi = X
wi−1 = X, wi−2 = X
wi+1 = X, wi+2 = X

∀wi posi = X
posi−1 = X, posi−2 = X
posi+1 = X, posi+2 = X

∀wi nei−1 = X
nei−2nei−1 = XY

Table 4: Baseline contextual predicates

6 Maximum Entropy Tagger

The purpose of creating this annotated cor-
pus is to develop a named entity tagger for
astronomy literature. In these experiments we
adapt the C&C ne tagger (Curran and Clark,
2003) to astronomy literature by investigat-
ing which feature types improve the perfor-
mance of the tagger. However, as we shall
see below, the tagger can also be used to test
and improve the quality of the annotation. It
can also be used to speed up the annotation
process by pre-annotating sentences with their
most likely tag. We were also interested to see
whether > 40 named-entity categories could
be distinguished successfully with this quan-
tity of data.

Condition Contextual predicate

f(wi) < 5 wi contains period/punctuation
wi is only digits
wi is a number
wi is {upper,lower,title,mixed} case
wi is alphanumeric
length of wi

wi has only Roman numerals
wi is an initial (x.)
wi is an acronym (abc, a.b.c.)

∀wi memory ne tag for wi

unigram tag of wi+1, wi+2

∀wi wi, wi−1 or wi+1 in a gazetteer
∀wi wi not lowercase and flc > fuc
∀wi uni-, bi- and tri-grams of word type

Table 5: Contextual predicates in final system

The C&C ne tagger feature types are shown
in Tables 4 and 5. The feature types in Ta-
ble 4 are the same as used in MXPost (Rat-
naparkhi, 1996) with the addition of the ne
tag history features. We call this the baseline

system. Note, this is not the baseline of the
ne tagging task, only the baseline performance
for a Maximum Entropy approach.

Table 5 includes extra feature types that
were tested by Curran and Clark (2003). The
wi is only digits predicates apply to words
consisting of all digits. Title-case applies to
words with an initial uppercase letter followed
by lowercase (e.g. Mr). Mixed-case applies to
words with mixed lower- and uppercase (e.g.
CitiBank). The length features encode the
length of the word from 1 to 15 characters,
with a single bin for lengths greater than 15.

The next set of contextual predicates encode
extra information about ne tags in the current
context. The memory ne tag predicate records
the ne tag that was most recently assigned
to the current word. This memory is reset at
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N Word Correct Tagged

23 OH mol none
14 rays part none
8 GC gxyp none
6 cosmic part none
6 HII ion none
5 telescope tel none
5 cluster stac none
5 and lum none
4 gamma none part

Table 6: Detected Errors and Ambiguities

the beginning of each document. The unigram
predicates encode the most probable tag for
the next words in the window. The unigram
probabilities are relative frequencies obtained
from the training data. This feature enables
us to know something about the likely ne tag
of the next word before reaching it.

Another feature type encodes whether the
current word is more frequently seen in low-
ercase than title-case in a large external cor-
pus. This is useful for disambiguating begin-
ning of sentence capitalisation. Eventually the
frequency information will come from the raw
astronomy corpus itself.

Collins (2002) describes a mapping from
words to word types which groups words with
similar orthographic forms into classes. This
involves mapping characters to classes and
merging adjacent characters of the same type.
For example, Moody becomes Aa, A.B.C. be-
comes A.A.A. and 1,345.05 becomes 0,0.0.
The classes are used to define unigram, bi-
gram and trigram contextual predicates over
the window. This is expected to be a very
useful feature for scientific entities.

7 Detecting Errors and Ambiguities

We first trained the C&C tagger on the anno-
tated corpus and then used this model to retag
the corpus. We then compared this retagged
corpus with the original annotations. The dif-
ferences were manually checked and correc-
tions made where necessary.

Table 6 shows the most frequent errors and
ambiguities detected by this approach. Most
of the differences found were either the result
of genuine ambiguity or erroneous annotation.

GC, cosmic and HII are examples of genuine
ambiguity that is difficult for the tagger to
model correctly. GC means globular cluster which

Experiment P R F-score

baseline 93.0 82.5 87.5
extended 91.2 82.4 86.6

-memory 92.1 84.3 88.0
-memory/pos 92.3 83.9 87.9

coarse base 92.6 86.7 89.5
coarse extended 93.0 88.9 90.9

Table 7: Feature experiment results

is not tagged, but less often refers to the Galac-
tic Centre which is tagged (gxyp). cosmic oc-
curs in two contexts: as part of cosmic ray(s)
which is tagged as a particle; and in expres-
sions such as cosmic microwave background radiation

which is not tagged. HII is used most frequently
in reference to HII ions and hence is tagged as
an (ion). However, occasionally HII is used to
refer to HII galaxies and not tagged.

OH and gamma rays are examples where there
was some inconsistency or error in some of
the annotated data. In both of these cases
instances in the corpus were not tagged.

We also implemented the approach of Dick-
inson and Meurers (2003) for identifying anno-
tation errors in part of speech (pos) tagging.
Their approach finds the longest sequence of
words that surround a tagging ambiguity. The
longer the context, the more likely the am-
biguity is in fact an annotation error. This
approach identified a number of additional er-
rors, particularly annotation errors within en-
tities. However, many of the errors we may
have found using this technique were already
identified using the tagging described above.

8 Inter-annotator Agreement

To test the reliability of the annotations we
performed two tests. Firstly, we asked an as-
tronomy PhD student to take our annotation
guidelines and annotate around 30,000 words
(15% of the corpus). Secondly, the second au-
thor also reannotated a different 30,000 words
about 2-months after the original annotation
process to check for self consistency.

We used the kappa statistic (Cohen, 1960)
to evaluate inter-annotator reliability. The
kappa value for agreement with the PhD stu-
dent annotation was 0.91 on all tags and 0.82
not including the none tags. Given that the
annotation guidelines were not as complete as
we would have liked, this agreement is very
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good. The kappa value for agreement with
the reannotated corpus was 0.96 on all tags
and 0.92 not including the none tags.

When the differences between the 30,000
word sections and the original corpus were
check manually (by the second author and
the PhD student) practically all of them were
found to be annotation errors rather than gen-
uine ambiguity that they could not agree on.

9 Results

We split the corpus into 90% training and 10%
testing sets. For our final results we performed
10-fold cross validation. For the experiments
analysing the contribution of named entity fea-
ture types from the C&C tagger we used one of
the 10 folds. The evaluation was performed us-
ing the CoNLL shared task evaluation script1.

9.1 Feature Experiments

The results of the feature experiments are
shown in Table 7. The Maximum Entropy
baseline performance of 87.5% F-score is very
high given the large number of categories.
Clearly there is enough contextual information
surrounding the entities that they can be fairly
reliably tagged.

A surprising result is that using all of the ad-
ditional features which helped significantly im-
prove performance on newswire actually dam-
ages performance by ∼ 1%. Further experi-
mental analysis with removing specific feature
types found that the offending feature was the
last tagged with tag x feature (the memory

feature). Removing this feature improves per-
formance a little bit more giving our best re-
sult of 88.0% F-score. We believe this fea-
ture performs particularly badly on numeric
expressions which are part of many different
named entity classes which may appear with
the same word in a single article.

We experimented with removing the pos tag
features since the pos tagger performed very
badly on astronomy text, but this made little
difference. We have experimented with remov-
ing the other feature types listed in Table 5
but this resulted in a small decrease in perfor-
mance each time.

This demonstrates that with new training
data it is fairly straightforward to achieve rea-

1http://www.cnts.ua.ac.be/conll2003/ner/bin/

Category Constituent categories

galaxy gxy, gxyp, gxyc, nebp, neb
star sta, stap, stac, supa
object obj, objp, evt
sso pnt, pntp, moo, moop
units frq, wav, dist, temp, dur, mass,

ang, lum, vel, pct, egy, unit, pos
inst. tel, inst
particle part, elem, mol, ion, ln
person per, org, url
location loc
obs. sur, cat, db
date dat, time
software code

Table 8: Coarse-grained mapping

sonable performance in identifying astronomy
named entities.

9.2 Coarse-grained categories

One interesting property of our named entity
corpus is the very large number of categories
relative to existing ne corpora such as muc.
To test what impact the number of classes has
on performance we repeated the experiment
described above, using coarser-grained named
entity categories based on the mapping shown
in Table 8.

The course grained classifier achieves an F-
score of 89.5% using the baseline feature set
and an F-score of 90.9% using the extended
feature set without the memory feature. The
key difference between the fine and coarse
grained results is the significantly better recall
on coarse grained classes.

10 Conclusion

This is a pilot annotation of astronomy texts
with named entity information. Now that we
have created the initial corpus we intend to
reevaluate the categories, aiming for greater
consistency and coverage of the entities of in-
terest in the corpus.

We have performed preliminary experiments
in training taggers using our corpus. These
experiments have produced very promising re-
sults so far (87.8% F-score on 10-fold cross
validation). We intend to extend our evalu-
ation of individual features for scientific text
and add features that exploit online astronomy
resources.

This paper has described in detail the pro-
cess of creating a named entity annotated cor-
pus of astronomical journal articles and con-
ference papers. This includes translating the
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LATEX typesetting information into a useable
format. Unlike existing work we have rendered
the mathematics in Unicode text rather than
just removing it, which is important for fur-
ther analysis of the data. The resulting corpus
is larger than existing resources, such as muc,
but has been annotated with a much more de-
tailed set of over 40 named entity classes.

Finally, we have demonstrated that high ac-
curacy named entity recognisers can be trained
using the initial release of this corpus, and
shown how the tagger can be used to itera-
tively identify potential tagging errors. The
quality of the results should only improve as
the corpus size and quality is increased.
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