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Overview

• a brief probability and statistics refresher

– statistical modelling
– Naı̈ve Bayes

• Information Theory concepts

– uniformity and entropy

• Maximum Entropy principle

– choosing the most uniform model
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Overview

• Maximum Entropy models

– Features and Constraints
– Maximising Entropy
– Alternative formulation

• Estimating Maximum Entropy models

– GIS, IIS, conjugate gradient, quasi-Newtonian methods
– smoothing techniques

• Applications
. . .
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Statistical Modelling

• given a set of observations (i.e. measurements):
=⇒ extract a mathematical description of observations
=⇒ statistical model
=⇒ use this for predicting future observations

• a statistical model should:

– represent faithfully the original set of measurements
– generalise sensibly beyond existing measurements
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Faithful Representation

• trivial if no generalisation is required
just look up the relative frequency directly

• trust the training data exclusively

• but unseen observations are impossible
since relative frequency is zero

• and most observations are unseen

=⇒ practically useless!!
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Sensible Generalisation

• want to find correct distribution given seen cases
i.e. to minimise error in prediction

• sensible is very hard to pin down

• may be based on some hypothesis about the problem space

• might be based on attempts to account for unseen cases

=⇒ generalisation reduces faithfulness
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Example: Modelling a Dice Roll

• consider a single roll of a 6-sided dice

• without any extra information (any measurements)

• what is the probability of each outcome?

• why do you make that decision?
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Example: Modelling a Biased Dice Roll

• now consider observing lots (e.g. millions) of dice rolls

• imagine the relative frequency of sixes is unexpectedly high

P(6) = 1/3

• now what is the probability of each outcome?

• why do you make that decision?
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Uniform Distribution

• generalisation without any other information?

• most sensible choice is uniform distribution of mass

• when all mass is accounted for by observations
we must redistribute mass to allow for unseen events

• i.e. take mass from seen events to give to unseen events
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Example: Modelling a Complex Dice Roll

• we can make this much more complicated

• P(6) = 1/3, P(4) = 1/4, P(2 or 3) = 1/6, . . .

• impossible to visualise uniformity

• impossible to analytically distribute mass uniformly
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Entropy

−
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• Entropy is a measure of uncertainty of a distribution

• higher the entropy the more uncertain a distribution is

• entropy matches out intuitions regarding uniformity
i.e. it measures uniformity of a distribution

but applies to distributions in general

• also a measure of the number of alternatives
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Maximum Entropy principle

• Maximum Entropy modelling:

– predicts observations from training data
(faithful representation)

– this does not uniquely identify the model

• chooses the model which has the most uniform distribution

– i.e. the model with the maximum entropy
(sensible generalisation)
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Features

• features encode observations from the training data

• include the class for classification tasks

(title caps, NNP) Citibank, Mr.
(suffix -ing, VBG) running, cooking

(POS tag DT, I-NP) the bank, a thief
(current word from, I-PP) from the bank

(next word Inc., I-ORG) Lotus Inc.
(previous word said, I-PER) said Mr. Vinken
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Complex Features

• features can be arbitrarily complex

– e.g. document level features
(document = cricket & current word = Lancashire, I-ORG)
=⇒ hopefully tag Lancashire as I-ORG not I-LOC

• features can be combinations of atomic features

– (current word = Miss & next word = Selfridges, I-ORG)
=⇒ hopefully tag Miss as I-ORG not I-PER
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Features in Maximum Entropy Models

• Features encode elements of the context C useful for predicting klass t

• Features are binary valued functions (not true), e.g.

fi(C, t) =
{

1 if word(C) = Moody & t = I-ORG
0 otherwise

• word(C) = Moody is a contextual predicate

• identify (contextual predicate, tag) pairs in classification tasks
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The Model

p(t|C) =
1

Z(C)
exp

















n
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i=1

λi fi(C, t)

















• fi is a feature

• λi is a weight (large value implies informative feature)

• Z(C) is a normalisation constant ensuring a proper probability distribution

• Also known as a log-linear model

• Makes no independence assumptions about the features
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Model Estimation

p(t|C) =
1

Z(C)
exp
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• Model estimation involves setting the weight values λi

• The model should reflect the data
=⇒ use the data to constrain the model

• What form should the constraints take?
=⇒ constrain the expected value of each feature fi
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The Constraints

Ep fi =
∑

C,t

p(C, t) fi(C, t) = Ki

• Expected value of each feature must satisfy some constraint Ki

• A natural choice for Ki is the average empirical count:

Ki = E p̃ fi =
1
N

N
∑

j=1

fi(C j, t j)

derived from the training data (C1, t1), . . . , (CN, tN)
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Choosing the Maximum Entropy Model

• The constraints do not uniquely identify a model

• From those models satisfying the constraints:
choose the Maximum Entropy model

• The maximum entropy model is the most uniform model
=⇒ makes no assumptions in addition to what we know from the data

• Set the weights to give the MaxEnt model satisfying the constraints
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The Other Derivation

• start with a log-linear model:

p(t|C) =
1

Z(C)
exp
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λi fi(C, t)

















• the Maximum Likelihood Estimate for these forms of models . . .

• also happens to be the Maximum Entropy Model

two completely independent justifications!
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Finding Maximum Entropy Model
Three approaches to solving the constrained optimisation problem:

• Generalised Iterative Scaling (GIS)

• Improved Iterative Scaling

• direct constrained optimisation, e.g.:

– conjugate gradient
– limited memory BFGS

progressively improving speed of convergence
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GIS in Practice
Stephen Clark and I have:

• proved that there is no need for correction feature

• showed with clever implementation GIS is fast

• showed that GIS converges fast enough for many NLP tasks

Curran MaxEnt models for NLP 6th December, 2004



22

Smoothing

• Models which satisfy the constraints exactly tend to overfit the data

• In particular, empirical counts for low frequency features can be unreliable

– often leads to very large weight values

• Common smoothing technique is to ignore low frequency features

– but low frequency features may be important

• Use a prior distribution on the parameters

– encodes our knowledge that weight values should not be too large
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Gaussian Smoothing

• We use a Gaussian prior over the parameters

– penalises models with extreme feature weights

• This is a form of maximum a posteriori (MAP) estimation

• Can be thought of as relaxing the model constraints

• Requires a modification to the update rule
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Tagging with Maximum Entropy Models

• The conditional probability of a tag sequence t1 . . . tn is

p(t1 . . . tn|w1 . . .wn) ≈
n
∏

i=1

p(ti|Ci)

given a sentence w1 . . .wn and contexts C1 . . .Cn

• The context includes previously assigned tags (for a fixed history)

• Beam search is used to find the most probable sequence in practice‘
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Part of Speech (POS) Tagging

Mr. Vinken is chairman of Elsevier N.V. ,
NNP NNP VBZ NN IN NNP NNP ,

the Dutch publishing group .
DT NNP VBG NN .

• 45 POS tags

• 1 million words Penn Treebank WSJ text

• 97% state of the art accuracy
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Chunk Tagging

Mr. Vinken is chairman of Elsevier N.V. ,
I-NP I-NP I-VP I-NP I-PP I-NP I-NP O

the Dutch publishing group .
I-NP I-NP I-NP I-NP O

• 18 phrase tags

• B-XX separates adjacent phrases of same type

• 1 million words Penn Treebank WSJ text

• 94% state of the art accuracy
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Named Entity Tagging

Mr. Vinken is chairman of Elsevier N.V. ,
I-PER I-PER O O O I-ORG I-ORG O

the Dutch publishing group .
O O O O O

• 9 named entity tags

• B-XX separates adjacent phrases of same type

• 160,000 words Message Understanding Conference (MUC-7) data

• 92-94% state of the art accuracy
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Contextual Predicates
Condition Contextual predicate

freq(wi) < 5 X is prefix/suffix of wi, |X| ≤ 4
wi contains a digit
wi contains uppercase character
wi contains a hyphen

∀wi wi = X
wi−1 = X, wi−2 = X
wi+1 = X, wi+2 = X

∀wi POSi = X
POSi−1 = X, POSi−2 = X
POSi+1 = X, POSi+2 = X

∀wi KLASSi−1 = X
KLASSi−2KLASSi−1 = XY
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Additional Contextual Predicates
Condition Contextual predicate
freq(wi) < 5 wi contains period

wi contains punctuation
wi is only digits
wi is a number
wi is � upper,lower,title,mixed � case
wi is alphanumeric
length of wi

wi has only Roman numerals
wi is an initial (X.)
wi is an acronym (ABC, A.B.C.)
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Additonal Contextual Predicates
Condition Contextual predicate
∀wi memory NE tag for wi

unigram tag of wi+1
unigram tag of wi+2

∀wi wi in a gazetteer
wi−1 in a gazetteer
wi+1 in a gazetteer

∀wi wi not lowercase and flc > fuc

∀wi unigrams of word type
bigrams of word types
trigrams of word types
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Example Word Types

• Moody =⇒ Aa

• A.B.C. =⇒ A.A.A.

• 1,345.00 =⇒ 0,0.0

• Mr. Smith =⇒ Aa. Aa
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Combinatory Categorial Grammar (CCG)

• CCG is a lexicalised grammar formalism
The WSJ is a publication that I read

NP/N N (S[dcl]\NP)/NP NP/N N (NP\NP)/(S[dcl]/NP) NP (S[dcl]\NP)/NP

• grammatical information encoded in the lexical categories

• a small number of combinatory rules combine the categories

• designed for recovery of long-range dependencies
e.g. relativisation, coordination
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Supertagging

• assigning one or more lexical categories to each word

• increases parser efficiency by reducing number of structures

• parsing as assigning categories and then combining using rules

• introduced for Lexicalised Tree Adjoining Grammar (LTAG)
Bangalore and Joshi (1999)

• previously each word was assigned every category it was seen with
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Supertagging for CCG

• initially adapted to CCG to improve parsing efficiency
Clark (2002)

• allows for rapid porting to new domains, e.g. questions
Clark et al. (2004)

• makes discriminative training feasible
=⇒ sophisticated log-linear statistical model

• makes parsing extremely efficient
=⇒ fastest parser for a linguistically-motivated formalism
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Supertagging for CCG

He goes on the road with his piano

NP (S[dcl]\NP)/PP PP/NP NP/N N ((S\NP)\(S\NP))/NP NP/N N

A bitter conflict with global implications

NP/N N/N N (NP\NP)/NP N/N N

• ≈ 400 lexical category types (from a complete set of ≈ 1,200)

• Baseline tagging accuracy is ≈ 72%

• significantly harder than POS tagging
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CCG Unitagging

• assign one category per word

• train on sections 2-21 of CCGbank

• use GIS with a Gaussian prior for smoothing
Curran and Clark (2003)

• 91.7% per-word accuracy on Section 23

• accuracy is not high enough for integration into a parser
Clark (2002)
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CCG Multitagging

• assign potentially more than one category per word

• use P(yi|X) directly to assign categories to i-th word:
assign any category with probability within β of the most probable category

• P(yi|X) ≈ P(yi|xi) (ignoring history features)

• no beam required – extremely fast

• a better solution is to use the forward-backward algorithm
but this simple solution works very well
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Multitagging Accuracy

β CATS/ GOLD POS AUTO POS

WORD WORD SENT WORD SENT

0.1 1.4 97.0 62.6 96.4 57.4
0.075 1.5 97.4 65.9 96.8 60.6
0.05 1.7 97.8 70.2 97.3 64.4
0.01 2.9 98.5 78.4 98.2 74.2
0.01k=100 3.5 98.9 83.6 98.6 78.9
0 21.9 99.1 84.8 99.0 83.0
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The Parser

• takes POS tagged text as input

• uses a packed chart to represent every possible analysis
consistent with supertags

• uses CKY chart parsing algorithm described in Steedman (2000)

• uses conditional log-linear parsing model

• uses Viterbi algorithm to find the most probable derivation
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Log-Linear Parsing Models

• many parsing models evaluated in Clark and Curran (2004)

– all-derivations model
– normal-form model

• recovers dependencies at around 85% F-score

• all use a discriminative estimation method
=⇒ requires all of the derivation space

• CCG parses are often huge (trillions of possible derivations)
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Log-Linear Parsing Models

• many parsing models evaluated in Clark and Curran (2004)

– all-derivations model
– normal-form model

• recovers dependencies at around 84% F-score

• all use a discriminative estimation method
=⇒ requires all of the derivation space

• wide-coverage CCG charts are often huge (trillions of possible derivations)
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Practical Estimation

• 40 000 sentences × up to several trillion parses each

• packed chart representation is extremely compact

• still requires over 31 GB of RAM !

• use a 64-node Beowulf cluster and MPI programming
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Training Data

• CCGbank data consists of one normal-form derivation

• supertagger assigns additional plausible but incorrect categories

• categories + CCG rules determines the search space

• parser learns to select correct derivation from this space

• minimise search space w/o loss of parser accuracy
=⇒ can reduce space with supertagging and constraints
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Constraints
normal-form only uses type-raising and composition when necessary

CCGbank constraints only allow seen category combinations
e.g. although NP/NP NP/NP can forward compose
doesn’t appear in CCGbank Sections 2-21

Eisner normal-form constraints limits use of composed categories
very useful for restricting search space
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Reducing the Space for Training

SUPERTAGGING/PARSING USAGE

CONSTRAINTS DISK MEMORY

original β = 0.01→ 0.05→ 0.1 17 GB 31 GB
new constraints 9 GB 16 GB
new β = 0.05→ 0.1 2 GB 4 GB

β = 0.01 is the least restrictive supertagger setting
packed charts limited to 300,000 nodes
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Reducing the Space for Training

• constraints reduce space by about 48%

• constraints + tighter supertagging reduce space by 87%

• gives state-of-the-art performance of 84.6 F-score

• now feasible to perform estimation on a single machine
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Running the Parser

old strategy give the parser maximum freedom to find best parse

• assign as many categories as possible initially
• reduce the number of categories if the chart gets too big

new strategy give the parser limited freedom to find the best parse

• assign as few categories as possible initially
• increase the number of categories if we don’t get an analysis

=⇒ parser decides if the categories provided are acceptable
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Parse Times for Section 23

SUPERTAGGING/PARSING TIME SENTS WORDS

CONSTRAINTS SEC /SEC /SEC

original β = 0.01→ . . .→ 0.1 3 523 0.7 16
new constraints 995 2.4 55
new β = 0.1→ . . . 0.01k=100 608 3.9 90
new constraints 100 24.0 546
new beam 67 35.8 814
new beam and β = 0.1→ 0.075 46 52.2 1 186
oracle 18 133.4 3 031

Parser is using the correct supertags
Coverage is 93%

Curran MaxEnt models for NLP 6th December, 2004

49

I canna break the laws of physics . . .

• speed increased by a factor of 77

• F-score also increased by 0.5% using new strategy

• faster than other wide-coverage linguistically-motivated parsers
by an order of magnitude (and approaching two)
e.g. Collins (1998) and Kaplan et al. (2004)

• still room for further speed gains with better supertagging
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Further Tagging Developments
Conditional Random Fields (a.k.a. Markov Random Fields)

• assign probability to entire sequence as a single classification

• uses cliques of pairs of tags and Forward-Backward algorithm

• overcome the label bias problem

• but in practice this doesn’t seem to be a major difficulty
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Work in Progress

• forward-backward multitagging

• real-valued features for tagging tasks

• question classification
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Forward-Backward Multitagging

• how can we incorporate the history into multitagging?

• one solution: sum over all sequences involving a given tag

• i.e. all of the probability mass which use a tag

• use the forward-backward algorithm

• gives much lower ambiguity for the same level of accuracy

Curran MaxEnt models for NLP 6th December, 2004

53

Real-valued features (David Vadas)

• features can have any non-negative real-value
i.e. features are not required to be binary-valued

• can encode corpus derived information about unknown words

e.g. John ate the blag .

• gives ≈ 1.4% improvement on POS tagging unseen words
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Question Classification (Krystle Kocik)

• questions can be classified by their answer type
e.g. What is the capital of Australia→ LOC:city

• 6 course grained and 50 fine grained categories

• state of the art is SNoW (Li and Roth, 1999) at 84.2% accuracy (fine grained)

• Maximum Entropy model gives accuracy 85.4% with CCG parser features
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Future Work

• using multitags as features in cascaded tools

• i.e. keeping the ambiguity in the model for longer

• automatic discovery of useful complex features

• other smoothing functions (L1 normalisation)
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Conclusions
Maximum Entropy modelling is a

very powerful,
flexible and

theoretically well motivated
Machine Learning approach.

It has been applied successfully to many NLP tasks

Use it!
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