Maximum Entropy Models for Natural Language Processing

James Curran

The University of Sydney james@it.usyd.edu.au

6th December, 2004

Curran

MaxEnt models for NLP

6th December, 2004

1

The University of Sydney-

Overview

- a brief probability and statistics refresher
 - statistical modelling
 - Naïve Bayes
- Information Theory concepts
 - uniformity and entropy
- Maximum Entropy principle
 - choosing the most uniform model

The University of Sydney[.]

Overview

- Maximum Entropy models
 - Features and Constraints
 - Maximising Entropy
 - Alternative formulation
- Estimating Maximum Entropy models
 - GIS, IIS, conjugate gradient, quasi-Newtonian methods
 - smoothing techniques
- Applications

• • •

Curran

MaxEnt models for NLP

6th December, 2004

The University of Sydney-

Statistical Modelling

- given a set of observations (i.e. *measurements*):
 ⇒ extract a mathematical description of observations
 ⇒ statistical model
 - \implies use this for **predicting** future observations
- a statistical model should:
 - represent faithfully the original set of measurements
 - generalise sensibly beyond existing measurements

Faithful Representation

- trivial **if no generalisation** is required *just look up the relative frequency directly*
- trust the training data exclusively
- but unseen observations are impossible since relative frequency is zero
- and most observations are unseen
 - \implies practically useless!!

Curran

MaxEnt models for NLP

6th December, 2004

5

The University of Sydney<mark>-</mark>

Sensible Generalisation

- want to find correct distribution given seen cases *i.e. to minimise error in prediction*
- **sensible** is very hard to pin down
- may be based on some hypothesis about the problem space
- might be based on attempts to account for unseen cases

 \implies generalisation reduces faithfulness

Example: Modelling a Dice Roll

- consider a single roll of a 6-sided dice
- without any extra information (any measurements)
- what is the probability of each outcome?
- why do you make that decision?

Curran

MaxEnt models for NLP

6th December, 2004

7

The University of Sydney-

Example: Modelling a Biased Dice Roll

- now consider observing lots (e.g. millions) of dice rolls
- imagine the relative frequency of sixes is unexpectedly high

$$P(6) = 1/3$$

- now what is the probability of each outcome?
- why do you make that decision?

Uniform Distribution

- generalisation without any other information?
- most sensible choice is uniform distribution of mass
- when all mass is accounted for by observations we must redistribute mass to allow for unseen events
- i.e. take mass from seen events to give to unseen events

Curran

MaxEnt models for NLP

6th December, 2004

9

The University of Sydney-

Example: Modelling a Complex Dice Roll

- we can make this much more complicated
- P(6) = 1/3, P(4) = 1/4, P(2 or 3) = 1/6, ...
- impossible to visualise uniformity
- impossible to analytically distribute mass uniformly

• Entropy is a measure of uncertainty of a distribution

- higher the entropy the more uncertain a distribution is
- entropy matches out intuitions regarding uniformity i.e. it measures uniformity of a distribution

but applies to distributions in general

• also a measure of the number of alternatives

Curran

MaxEnt models for NLP

Entropy

 $-\sum_{\mathbf{x}}\mathbf{p}(\mathbf{x})\log_{2}\mathbf{p}(\mathbf{x})$

6th December, 2004

11

The University of Sydney

Maximum Entropy principle

- Maximum Entropy modelling:
 - predicts observations from training data (faithful representation)
 - this does not uniquely identify the model
- chooses the model which has the most uniform distribution
 - i.e. the model with the maximum entropy (sensible generalisation)

Features

• features encode observations from the training data

• include the class for classification tasks

(title caps, NNP)	Citibank, Mr.
(suffix -ing, VBG)	running, cooking
(POS tag DT , I-NP)	the bank, a thief
(current word from, I-PP)	from the bank
(next word Inc., I-ORG)	Lotus Inc.

(next word Inc., I-ORG) Lotus Inc. (previous word said, I-PER) said Mr. Vinken

Curran

MaxEnt models for NLP

6th December, 2004

The University of Sydney-

Complex Features

- features can be arbitrarily complex
- features can be combinations of atomic features

Features in Maximum Entropy Models

- Features encode elements of the context C useful for predicting klass t
- Features are binary valued functions (**not true**), e.g.

 $f_i(C, t) = \begin{cases} 1 & \text{if } \text{word}(C) = \text{Moody } \& t = \textbf{I} - \textbf{ORG} \\ 0 & \text{otherwise} \end{cases}$

- word(C) = Moody is a contextual predicate
- identify (contextual_predicate, tag) pairs in classification tasks

Curran

MaxEnt models for NLP

6th December, 2004

15

The

$$p(t|C) = \frac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- f_i is a feature
- λ_i is a weight (large value implies informative feature)
- Z(C) is a normalisation constant ensuring a proper probability distribution
- Also known as a *log-linear* model
- Makes no independence assumptions about the features

14

The University of Sydney-

17

6th December, 2004

16

Model Estimation

$$p(t|C) = \frac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- Model estimation involves setting the weight values λ_i
- The model should reflect the data
 ⇒ use the data to constrain the model
- What form should the constraints take?
 ⇒ constrain the expected value of each feature f_i

Curran

The University of Sydney—

The Constraints

$$E_p f_i = \sum_{C,t} p(C,t) f_i(C,t) = K_i$$

- Expected value of each feature must satisfy some constraint K_i
- A natural choice for *K_i* is the average empirical count:

$$K_i = E_{\tilde{p}} f_i = \frac{1}{N} \sum_{j=1}^{N} f_i(C_j, t_j)$$

derived from the training data $(C_1, t_1), \ldots, (C_N, t_N)$

MaxEnt models for NLP

Choosing the Maximum Entropy Model

- The constraints do not uniquely identify a model
- From those models satisfying the constraints: choose the Maximum Entropy model
- The maximum entropy model is the *most uniform model* → makes no assumptions in addition to what we know from the data
- Set the weights to give the MaxEnt model satisfying the constraints

Curran

Curran

MaxEnt models for NLP

6th December, 2004

The Other Derivation

• start with a log-linear model:

$$p(t|C) = \frac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- the Maximum Likelihood Estimate for these forms of models ...
- also happens to be the Maximum Entropy Model

two completely independent justifications!

MaxEnt models for NLP

Finding Maximum Entropy Model

Three approaches to solving the constrained optimisation problem:

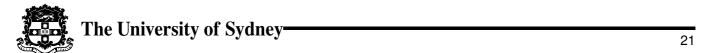
- Generalised Iterative Scaling (GIS)
- Improved Iterative Scaling
- direct constrained optimisation, e.g.:
 - conjugate gradient
 - limited memory BFGS

progressively improving speed of convergence

Curran

MaxEnt models for NLP

6th December, 2004



GIS in Practice

Stephen Clark and I have:

- proved that there is no need for correction feature
- showed with clever implementation GIS is fast
- showed that GIS converges fast enough for many NLP tasks

Smoothing

- Models which satisfy the constraints exactly tend to overfit the data
- In particular, empirical counts for low frequency features can be unreliable
 - often leads to very large weight values
- Common smoothing technique is to ignore low frequency features
 - but low frequency features may be important
- Use a *prior* distribution on the parameters
 - encodes our knowledge that weight values should not be too large

MaxEnt models for NLP

6th December, 2004

23

The University of Sydney-

Gaussian Smoothing

- We use a Gaussian prior over the parameters
 - penalises models with extreme feature weights
- This is a form of maximum a posteriori (MAP) estimation
- Can be thought of as relaxing the model constraints
- Requires a modification to the update rule

Tagging with Maximum Entropy Models

• The conditional probability of a tag sequence $t_1 \dots t_n$ is

$$p(t_1...t_n|w_1...w_n) \approx \prod_{i=1}^n p(t_i|C_i)$$

given a sentence $w_1 \dots w_n$ and contexts $C_1 \dots C_n$

- The context includes previously assigned tags (for a fixed history)
- Beam search is used to find the most probable sequence in practice'

Curran					nt mod	els for NLP		6th December, 2004	
	The Un	iversity (of Sydn	iey——					25
		Part	t of S	Spee	ch	(POS)]	lagg	ing	
Mr. NNP	Vinken NNP	is VBZ	chair NN		of IN	Elsevier NNP	N.V. nnp	; /	
the DT	Dutch NNP	publishi vвG	• •	iroup IN	•				
• 45	POS tags								

- 1 million words Penn Treebank WSJ text
- 97% state of the art accuracy

Chunk Tagging									
Mr. I-NP	Vinken I–NP	is I–VP		nan of I-PP	Elsevier I-NP	N.V. I-np	, O		
the I–NP		publishiı I– NP	0 0	oup . NP O					
• 18 ph	irase tag	S							
• B-XX	separate	es adjace	nt phras	ses of sam	e type				
• 1 mill	ion word	s Penn Tr	eebank	WSJ text					
• 94%	state of t	he art acc	curacy						
Curran			Ma	axEnt models fo	r NLP		6th December, 2004		
11 AM									
	The Univ	ersity of S	Sydney—				27		
Named Entity Tagging									

The University of Sydney[.]

Mr.		Vinł	ken	is	cha	airman	of	Elsevier	N.V.	,
I-PE	ER	I-P	ER	0	0		0	I-ORG	I-ORG	0
the O	_				•	group O	0			

- 9 named entity tags
- B-XX separates adjacent phrases of same type
- 160,000 words Message Understanding Conference (MUC-7) data
- 92-94% state of the art accuracy

26

Contextual Predicates

Condition	Contextual predicate
$freq(w_i) < 5$	X is prefix/suffix of w_i , $ X \le 4$
	w_i contains a digit
	<i>w_i</i> contains uppercase character
	w_i contains a hyphen
$\forall w_i$	$w_i = X$
	$w_{i-1} = X, w_{i-2} = X$
	$w_{i+1} = X, w_{i+2} = X$
$\forall w_i$	$POS_i = X$
	$POS_{i-1} = X$, $POS_{i-2} = X$
	$POS_{i+1} = X$, $POS_{i+2} = X$
$\forall w_i$	$KLASS_{i-1} = X$
	$KLASS_{i-2}KLASS_{i-1} = XY$

Curran

MaxEnt models for NLP

6th December, 2004

29

The University of Sydney—

Additional Contextual Predicates

Condition	Contextual predicate			
$freq(w_i) < 5$	w_i contains period			
	w_i contains punctuation			
	w _i is only digits			
	w_i is a number			
	w_i is {upper,lower,title,mixed} case			
	w_i is alphanumeric			
	length of w _i			
	<i>w_i</i> has only Roman numerals			
	w_i is an initial (X.)			
	w_i is an acronym (ABC, A.B.C.)			

Curran

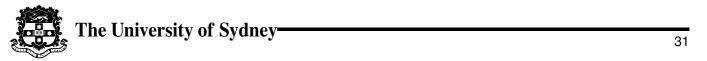
Additonal Contextual Predicates

Condition	Contextual predicate
$\forall w_i$	memory NE tag for w _i
	unigram tag of w_{i+1}
	unigram tag of w_{i+2}
$\forall w_i$	w_i in a gazetteer
	w_{i-1} in a gazetteer
	w_{i+1} in a gazetteer
$\forall w_i$	w_i not lowercase and $f_{lc} > f_{uc}$
$\forall w_i$	unigrams of word type
	bigrams of word types
	trigrams of word types

Curran

MaxEnt models for NLP

6th December, 2004



Example Word Types

- Moody \Longrightarrow Aa
- A.B.C. \Longrightarrow A.A.A.
- 1,345.00 ⇒ 0,0.0
- Mr. Smith \Longrightarrow Aa. Aa

• CCG is a lexicalised grammar formalism

is

NP/N N $(S[dcl] \setminus NP)/NP$ NP/N

Combinatory Categorial Grammar (CCG)

a

grammatical information encoded in the lexical categories

publication

Ν

that

Ι

 $(NP \setminus NP)/(S[dcl]/NP) NP (S[dcl] \setminus NP)/NP$

read

a small number of combinatory rules combine the categories designed for recovery of long-range dependencies e.g. relativisation, coordination MaxEnt models for NLP 6th December, 2004

The University of Sydney

Supertagging

- assigning one or more lexical categories to each word
- increases parser efficiency by reducing number of structures
- parsing as assigning categories and then combining using rules
- introduced for Lexicalised Tree Adjoining Grammar (LTAG) Bangalore and Joshi (1999)
- previously each word was assigned *every* category it was seen with

Curran

The WSJ

Supertagging for CCG

- initially adapted to CCG to improve parsing efficiency *Clark (2002)*
- allows for rapid porting to new domains, e.g. questions *Clark et al. (2004)*
- makes discriminative training feasible
 ⇒ sophisticated log-linear statistical model
- makes parsing extremely efficient
 fastest parser for a *linguistically-motivated* formalism

Curran	MaxEnt models for NLP	6th December, 2004
The University of Sy	dney	35
Su	pertagging for CCG	
He goes on the	road with his pian	10
\overline{NP} ($\overline{S[dcl]} NP$)/ \overline{PP} $\overline{PP/NP}$ NP/\overline{P}	\overline{N} \overline{N} $((\overline{S \setminus NP}) \setminus (S \setminus NP))/NP$ NP/N \overline{N}	
A bitter conflict with	global implications	
$\overline{NP/N}$ $\overline{N/N}$ \overline{N} $(\overline{NP\setminus NP})/N$	$\overline{P} = \overline{N/N} = \overline{N}$	
	pes (from a complete set of \approx 1,2	

- Baseline tagging accuracy is $\approx 72\%$
- significantly harder than POS tagging

ccg Unitagging

- assign one category per word
- train on sections 2-21 of CCGbank
- use GIS with a Gaussian prior for smoothing *Curran and Clark (2003)*
- 91.7% per-word accuracy on Section 23
- accuracy is not high enough for integration into a parser *Clark (2002)*

Curran

MaxEnt models for NLP

6th December, 2004

The University of Sydney—

CCG Multitagging

- assign potentially more than one category per word
- use P(y_i|X) directly to assign categories to *i*-th word: assign any category with probability within β of the most probable category
- $P(y_i|X) \approx P(y_i|x_i)$ (ignoring history features)
- no beam required extremely fast
- a better solution is to use the forward-backward algorithm but this simple solution works very well

Multitagging Accuracy

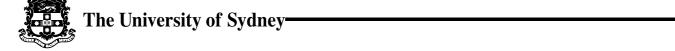
β	CATS/	GOLD	POS	AUTO POS	
	WORD	WORD	SENT	WORD	SENT
0.1	1.4	97.0	62.6	96.4	57.4
0.075	1.5	97.4	65.9	96.8	60.6
0.05	1.7	97.8	70.2	97.3	64.4
0.01	2.9	98.5	78.4	98.2	74.2
$0.01_{k=100}$	3.5	98.9	83.6	98.6	78.9
0	21.9	99.1	84.8	99.0	83.0

Curran

MaxEnt models for NLP

6th December, 2004

39



The Parser

MaxEnt models for NLP

- takes POS tagged text as input
- uses a packed chart to represent every possible analysis consistent with supertags
- uses CKY chart parsing algorithm described in Steedman (2000)
- uses conditional log-linear parsing model
- uses Viterbi algorithm to find the most probable derivation

Log-Linear Parsing Models

- many parsing models evaluated in Clark and Curran (2004)
 - all-derivations model
 - normal-form model
- recovers dependencies at around 85% F-score

Curran

MaxEnt models for NLP

6th December, 2004

41

Log-Linear Parsing Models

- many parsing models evaluated in Clark and Curran (2004)
 - all-derivations model

The University of Sydney

- normal-form model
- recovers dependencies at around 84% F-score
- all use a discriminative estimation method ⇒ requires all of the derivation space
- wide-coverage CCG charts are often huge (trillions of possible derivations)

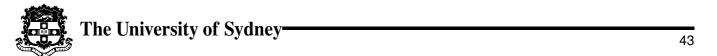
Practical Estimation

- 40 000 sentences × up to several trillion parses each
- packed chart representation is extremely compact
- still requires over 31 GB of RAM !
- use a 64-node Beowulf cluster and MPI programming

Curran

MaxEnt models for NLP

6th December, 2004



Training Data

- CCGbank data consists of one normal-form derivation
- supertagger assigns additional plausible but incorrect categories
- categories + CCG rules determines the search space
- parser learns to select correct derivation from this space
- minimise search space w/o loss of parser accuracy

 an reduce space with supertagging and constraints

Constraints

normal-form only uses type-raising and composition when necessary

CCGbank constraints only allow seen category combinations e.g. although *NP/NP NP/NP* can forward compose doesn't appear in CCGbank Sections 2-21

Eisner normal-form constraints limits use of composed categories very useful for restricting search space

Curran

MaxEnt models for NLP

6th December, 2004

45

The University of Sydney<mark>-</mark>

Reducing the Space for Training

SUPERTAGGING/PARSING	USAGE		
CONSTRAINTS	DISK	MEMORY	
original $\beta = 0.01 \rightarrow 0.05 \rightarrow 0.1$	17 GB	31 GB	
new constraints	9 GB	16 GB	
$\mathrm{new}\beta=0.05\to0.1$	2 GB	4 GB	

 $\beta = 0.01$ is the **least restrictive** supertagger setting packed charts limited to 300,000 nodes

Reducing the Space for Training

- constraints reduce space by about 48%
- constraints + tighter supertagging reduce space by 87%
- gives state-of-the-art performance of 84.6 F-score
- now feasible to perform estimation on a single machine

Curran

MaxEnt models for NLP

6th December, 2004

47

The University of Sydney<mark>-</mark>

Running the Parser

old strategy give the parser maximum freedom to find best parse

- assign as many categories as possible initially
- reduce the number of categories if the chart gets too big

new strategy give the parser limited freedom to find the best parse

- assign as few categories as possible initially
- increase the number of categories if we don't get an analysis

\implies parser decides if the categories provided are acceptable

Parse Times for Section 23

SUPERTAGGING/PARSING	Тіме	SENTS	WORDS
CONSTRAINTS	SEC	/SEC	/SEC
original $\beta = 0.01 \rightarrow \ldots \rightarrow 0.1$	3 5 2 3	0.7	16
new constraints	995	2.4	55
new $\beta = 0.1 \rightarrow \dots 0.01_{k=100}$	608	3.9	90
new constraints	100	24.0	546
new beam	67	35.8	814
new beam and $\beta = 0.1 \rightarrow 0.075$	46	52.2	1 1 8 6
oracle	18	133.4	3 0 3 1

Parser is using the correct supertags Coverage is 93%

Curran

MaxEnt models for NLP

6th December, 2004

The University of Sydney-

I canna break the laws of physics ...

- speed increased by a factor of 77
- F-score also increased by 0.5% using new strategy
- faster than other wide-coverage linguistically-motivated parsers by an order of magnitude (and approaching two)
 e.g. Collins (1998) and Kaplan et al. (2004)
- still room for **further speed gains** with better supertagging

49

Further Tagging Developments

Conditional Random Fields (a.k.a. Markov Random Fields)

- assign probability to entire sequence as a single classification
- uses cliques of pairs of tags and Forward-Backward algorithm
- overcome the *label bias* problem
- but in practice this doesn't seem to be a major difficulty

Curran

MaxEnt models for NLP

6th December, 2004

50

The University of Sydney<mark>-</mark>

Work in Progress

- forward-backward multitagging
- real-valued features for tagging tasks
- question classification

Forward-Backward Multitagging

- how can we incorporate the history into multitagging?
- one solution: sum over all sequences involving a given tag
- i.e. all of the probability mass which use a tag
- use the forward-backward algorithm
- gives much lower ambiguity for the same level of accuracy

Curran

MaxEnt models for NLP

6th December, 2004

53

The University of Sydney

Real-valued features (David Vadas)

- features can have any non-negative real-value i.e. features are not required to be binary-valued
- can encode corpus derived information about unknown words

e.g. John ate the blag .

• gives $\approx 1.4\%$ improvement on POS tagging unseen words

6th December, 2004

Curran

Question Classification (Krystle Kocik)

- questions can be classified by their answer type
 e.g. What is the capital of Australia → LOC:city
- 6 course grained and 50 fine grained categories
- state of the art is SNoW (Li and Roth, 1999) at 84.2% accuracy (fine grained)
- Maximum Entropy model gives accuracy 85.4% with CCG parser features

Curran

MaxEnt models for NLP

6th December, 2004

55

The University of Sydney

Future Work

- using multitags as features in cascaded tools
- i.e. keeping the ambiguity in the model for longer
- automatic discovery of useful complex features
- other smoothing functions (*L*₁ normalisation)

Conclusions

Maximum Entropy modelling is a very powerful, flexible and theoretically well motivated Machine Learning approach.

It has been applied successfully to many NLP tasks

Use it!

Curran

MaxEnt models for NLP

6th December, 2004

57

The University of Sydney—

Acknowledgements

Stephen Clark is my co-conspirator in almost all of these MaxEnt experiments.

Thanks to Krystle Kocik and David Vadas for their great honours project work.

I would like to thank Julia Hockenmaier for her work in developing CCGbank and Mark Steedman for advice and guidance.

This work was supported by EPSRC grant GR/M96889 (Wide-Coverage CCG parsing) and a Commonwealth scholarship and a Sydney University Travelling scholarship.