
Punctuation normalisation for cleaner treebanks and parsers

Daniel Tse and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{dtse6695,james}@it.usyd.edu.au

Abstract

Although punctuation is pervasive in written
text, their treatment in parsers and corpora is
often second-class.

We examine the treatment of commas in
CCGbank, a wide-coverage corpus for Com-
binatory Categorial Grammar (CCG), re-
analysing its comma structures in order to
eliminate a class of redundant rules, obtaining
a more consistent treebank.

We then eliminate these rules from C&C, a
wide-coverage statistical CCG parser, obtain-
ing a 37% increase in parsing speed on the
standard CCGbank test set and a considerable
reduction in memory consumed, without af-
fecting parser accuracy.

1 Introduction
Although parsers must all at least accept text con-
taining punctuation, there is much variation in how
punctuation is treated during training, parsing and
evaluation. The work of Nunberg (1990) brought
attention to the fact that parsers can often reject oth-
erwise ambiguous parses on the basis of punctua-
tion, by considering a formal grammar of text units:
chunks of text delimited by punctuation tokens.

In this work, we explore how the treatment of
commas, the most common class of punctuation in
the Penn Treebank (Marcus et al., 1994), affects
their analysis in CCGbank (Hockenmaier and Steed-
man, 2007), a 1.2 million word corpus for Combina-
tory Categorial Grammar (CCG), generated from a
subset of the Penn Treebank. We uncover a system-
atic inconsistency in the way CCGbank represents
sentences involving commas, and perform a trans-
formation of the original corpus which eliminates

this source of uninformative variation, resulting in a
version of CCGbank which assigns a uniform struc-
ture to each of the syntactic roles played by commas
in the corpus.

By removing the superfluous rules induced by this
inconsistency from the corpus, we obtain cleaner
analyses of comma structures which require fewer
CCG rules to explain. These changes to the cor-
pus, in turn, allow us to simplify the implementa-
tion of the C&C parser (Clark and Curran, 2007), a
wide-coverage statistical CCG parser for English, by
barring the parser from considering the CCG rules
which we have made redundant.

Training the C&C parser on our modified
CCGbank yields average speed gains of 37% and
21% on the standard CCGbank test set and develop-
ment set respectively, and a 47% reduction in mem-
ory consumed by the chart parsing process as evalu-
ated on the standard CCGbank test set. Parser cover-
age increases slightly while accuracy is not affected.

Consistency, a powerful and general guideline in
corpus design, can improve the usefulness and qual-
ity of corpora and the applications built with them.
We eliminate a source of systematic inconsistency
in comma representation from a wide-coverage cor-
pus and parser, resulting in cleaner versions of both
resources. The combination of a cleaner treebank
and parser leads to gains in speed and a reduction in
memory consumption without affecting parser accu-
racy.

2 Background
Nunberg (1990) characterises the traditional view
of written language as a simulacrum of a richer
medium, that of spoken language. Nunberg notes
that although formal prescriptive accounts of punc-



tuation have long been the domain of grammari-
ans (and the bane of their students), this perception
of writing as an inferior or merely transcriptional
medium has lead to the relative paucity of analytic
accounts of punctuation in linguistics.

Nunberg (1990) describes the macro-structure of
English text as two superposed systems: the text
grammar defines the well-formedness of a sen-
tence interpreted as a sequence of not necessarily
constituent-forming units, while the lexical gram-
mar encodes the usual relationships between indi-
vidual lexical items.

Nunberg’s validation of punctuation as a linguis-
tic system meriting study in its own right spurred
work affording punctuation a more integral role in
generation and parsing (Briscoe, 1994; Osborne,
1995), as well as work in corpus linguistics as to
the distribution and semantics of commas, and other
classes of punctuation tokens (Bayraktar et al., 1998;
Jones, 1997).

However, despite this renewal of interest, punc-
tuation is still often relegated to a marginal role
in parsing and the evaluation of parsers, because
its representation is often inconsistent between tree-
banks, and even within a treebank. evalb, a widely
used script for calculating the crossing-brackets
parser evaluation metric PARSEVAL, strips all punc-
tuation from the candidate and gold standard text
(Sekine and Collins, 2006), so that the attachment
level of any punctuation does not influence the
bracketing metric.

Briscoe (1994) discusses a parsing system which
uses Nunberg’s concept of a text grammar to in-
form its chunking decisions (in this context, the seg-
mentation of input text into sentences, robustly han-
dling non-terminal uses of periods, for example). In
Briscoe’s work, an implementation of text grammar
can eliminate incorrect parses based on punctuation.
In Example 1, a variation on the well-known PP at-
tachment problem, a parser which simply ignores
punctuation in the input will encounter ambiguity
which a punctuation-aware parser will not.

(1) I saw the girl on the hill with the telescope,
from the store.

(2) I saw the girl on the hill with the telescope
from the store.

The work of Djordjevic et al. (2007) for the C&C

parser constrains phrases delimited by hyphens,
colons and semicolons to be complete constituents,
allowing the parser to avoid great amounts of attach-
ment ambiguity when parsing long sentences. How-
ever, while Djordjevic et al. modify the parser to
derive information from punctuation in the corpus,
this work changes the representation of commas in
the corpus to convey information on each comma’s
role to the parser. The corpus we obtain assigns a
uniform structure to each of the comma’s syntactic
roles.

3 CCG and CCGbank
In Combinatory Categorial Grammar (Steedman,
2000), each lexical item receives a category such as
N/N or (S\NP)/NP, which determines how it may
combine with other groups of lexical items. New
categories may be formed of adjacent categories by
applying combinatory rules. In Figure 1, each line
denotes the application of a particular combinatory
rule, which combines at most two categories into an-
other category. Combinatory rules enable succinct,
natural CCG analyses for difficult constructions such
as argument cluster coordination and parasitic gaps
(Steedman, 2000).

I quickly grilled the steak .

NP (S\NP)/(S\NP) (S\NP)/NP NP/N N .
>

NP
>

S\NP
<

S\NP
<

S
S

Figure 1: CCG analysis

CCGbank is a wide-coverage CCG corpus, gener-
ated from the Wall Street Journal section of Penn
Treebank through an automatic conversion pro-
cedure described by Hockenmaier and Steedman
(2007). CCGbank enabled the development of wide-
coverage statistical CCG parsers such as the C&C

parser Clark and Curran (2007), on which we will
evaluate this work. Parsing in the C&C parser pro-
ceeds in two broad stages: a maximum entropy su-
pertagger assigns categories to lexical items, which
the parser then attempts to combine using the CCG

rules. The corpus, as a collection of CCG derivations,



implicitly encodes the set of CCG rules used in its
derivations. These rules must be explicitly encoded
in a parser trained on CCGbank, since the training
process requires it to reproduce the derivations rep-
resented in the corpus. The goal of this work is to
drastically reduce the number of rules implicitly en-
coded by CCGbank, and in turn reduce the number
of rules explicitly encoded in the C&C parser.

The distribution of punctuation symbols in
CCGbank is given in Figure 2. Commas account
for over half of all punctuation tokens, and peri-
ods well-represented but not as common as commas.
(Bayraktar et al., 1998) observes the same dramatic
drop between the frequency of commas and periods,
and the remaining punctuation marks.

Symbol Frequency
comma 59991 (53.77%)
period 47875 (42.91%)
colon 1649 (1.48%)

semi-colon 1460 (1.31%)
question mark 511 (0.46%)

excl. mark 71 (0.06%)
apostrophe 3 (0.002%)
Total punct 111560

Figure 2: Punctuation distribution in CCGbank

Although periods approach commas in frequency,
their representation in CCGbank is largely consis-
tent, since all of their roles are constituent-final: sen-
tence terminator, list index delimiter, abbreviation
marker. By comparison, commas in CCGbank occur
both constituent-initially as well as finally.

The goal of this work is to standardise the rep-
resentation of commas in CCGbank, either by con-
verting all left commas (comma leaves which are the
left child of their parent) to right commas, or vice
versa, and in doing so, allow us to remove unneces-
sary rules from the parser. In the next section, we
discuss and justify which of the CCGbank rules are
unnecessary, and which CCGbank rules our normal-
isation procedure should not modify.

4 Normalising CCGbank
Our goal of eliminating uninformative variation
from the corpus requires us to distinguish cases
where comma direction conveys some useful infor-
mation from those where it has no discriminative

function. We partition the CCGbank rules involving
a comma argument so that our processing only af-
fects those cases we are free to manipulate.

The intuition for our transformations on CCGbank
are as follows: commas are by a large margin, the
most common form of punctuation encountered in
Penn Treebank (Bayraktar et al., 1998).

The inconsistency in the representation of com-
mas is an artifact of the procedure by which Penn
Treebank derivations are transformed into CCGbank
derivations. Given a Penn Treebank derivation P, the
procedure uses head-finding heuristics to identify
the head of each constituent. Binarisation is a conse-
quence of the fact that CCG’s combinatory rules are
all unary or binary, requiring us to transform the k-
way branching structures of Penn Treebank-style an-
notation. The procedure uses the heads identified by
the first step to determine whether to generate left-
or right-branching structures: constituents left of the
head are left-branching, and those right of the head
branch rightwards, as depicted in Figure 3. This en-
sures that adjuncts seek the head, and not vice versa.

X

X

X

. . .X

. . .head

. . .

. . .

Figure 3: CCGbank binarisation

Accordingly, whether or not a comma node is
a left, or a right comma, depends on whether it
was left or right of the node identified by the head-
finding heuristic as the head, as shown in Figure 4.

DC

,BA

(a) Node C as head

DC,

BA

(b) Node B as head

Figure 4: Left and right commas

This means that for many categories, the corpus
contains a pair of absorption rules, so called because
they leave the input category X unchanged:



X , → X

, X → X

which, by virtue of being extra-combinatory rules,
must each be encoded in the parser. This prolifera-
tion of extra rules is merely an artifact of the binari-
sation process; in these cases, we judge that there is
no evidence for the comma belonging to one side or
the other, and that we are free to process the corpus
so that it embodies only one of the above two rules.

4.1 Type-change rules
Type-change rules in CCGbank analyse syntax such
as apposition without creating additional categorial
ambiguity. The tradeoff is that such rules are com-
pletely unlicensed by the underlying theory, hence
the designation extra-combinatory. Hockenmaier
and Steedman (2007) argue for the use of extra-
combinatory rules, to mitigate against the sparsity
of data which would be entailed by giving every ap-
position NP a different category to an NP not par-
ticipating in apposition. For example, the CCGbank
analysis of sentence-final NP apposition:

(3) The index fell to 997, the first decline since
July.

involves the following comma type-change rule:

, NP → (S\NP)\(S\NP) (T,)

The rule specifies that an NP following a comma can
be treated as a verb phrase modifier (in general, the
category of a modifier is X/X or X\X for some cate-
gory X), allowing the analysis shown in Figure 5.

In CCGbank, the comma introducing an apposi-
tion is necessary to the resulting analysis, in that the
rule does not trigger unless the comma is present.
As such, comma type-change rules are fundamen-
tally different from the comma absorption rules seen
above, which neither introduce dependencies, nor
affect interpretation. Furthermore, we can see that
the above rule cannot involve anything but a left
comma, for the simple reason that it is the analy-
sis for a sentence-final NP apposition. Therefore, if
we were to blindly normalise the above rule to:

∗NP , → (S\NP)\(S\NP) (T,)

we would no longer attain the same analysis of
sentence-final NP apposition. In general, Bayrak-
tar et al. (1998) consider the commas which in-
troduce apposition to be a form of paired punc-
tuation, like quotes or parentheses. Unlike close
quotes, or close parentheses, however, the ‘clos-
ing comma’ is suppressed when it immediately pre-
cedes the sentence-final period. This suggests that it
should be the ‘opening comma’ that triggers the use
of type-change rules enabling apposition, since the
‘closing comma’ is not realised sentence-finally, as
shown in Example 5.

(4) Pierre Vinken, chairman of Elsevier, will
become non-executive director.

(5) The non-executive director is Pierre Vinken,
chairman of Elsevier.

Hence, our comma normalisation does not pro-
cess commas involved in comma type-change rules.

4.2 Conjunction commas
CCG is known for its straightforward analysis of co-
ordination: two categories may be coordinated with
a conjunction precisely when the conjuncts have the
same category (Steedman, 2000). The CCGbank
treatment of coordination differs from the rule of
syncategorematic coordination originally given by
Steedman (2000), because of the undesirability of
introducing such a ternary rule as an exception to a
system of otherwise unary and binary combinatory
rules. To analyse coordination of nouns in series:

(6) Pound cake consists of butter, eggs and flour.

CCGbank instead provides the following pair of
extra-combinatory rules:

, N→ N[con j] (Φ1)
N N[con j]→ N (Φ2)

which yield an analysis isomorphic to Steedman’s
ternary coordination rule, without the need to di-
rectly implement such a ternary rule.

A category of the form X[conj] represents a con-
junct which has picked up a conjunction word, but
not the other conjunct1.

1In the analysis of Figure 6, a comma inserted before ‘and’
(the so-called Oxford comma) would receive the comma cat-
egory , and be subject to comma absorption, with the lexical
conjunction ‘and’ serving as the actual conjunction word.



The index fell to 997 , the first decline since July

NP[nb]/N N S[dcl]\NP ((S\NP)\(S\NP))/NP N , NP[nb]/N N/N N (NP\NP)/NP N
> > > >

NP (S\NP)\(S\NP) N NP\NP
< <

S[dcl]\NP NP
<

NP
T,

(S\NP)\(S\NP)
<

S[dcl]\NP
<

S[dcl]

Figure 5: The type change rule , NP→ (S\NP)\(S\NP) is applied in the fifth row

Butter , eggs and flour
N , N conj N

Φ1
N[conj]

Φ2
N

Φ1
N[conj]

Φ2
N

Figure 6: CCGbank analysis of coordination

For example, the partial coordination and flour in
Figure 6 receives the category NP[conj].

Suppose we are to convert the left comma rule Φ1
to a right comma rule as a candidate for normalisa-
tion.

N , → N[con j] (Φ′1)

Such a rule has the effect of consuming conjuncts
left-to-right, instead of right-to-left in the canonical
set of rules. To support such an order, we would also
need to change rule Φ2 accordingly:

N[con j] N → N (Φ′2)
That is, while the canonical set of rules yields a

right-branching analysis of coordination, replacing
the left comma rule with a right comma rule yields a
left-branching analysis instead. Functionally, there
is no difference between a left- and right-branching
analysis. However, if we were to convert the left
comma coordination rule Φ1 to a right comma rule,
we would have to re-analyse all right-branching co-
ordination structures in the corpus as left-branching
structures, with no change in semantics. Further-
more, we would save the parser no effort, since the
original rule Φ1 does not have a right comma rule
analogue which we could eliminate. Therefore, we
exclude coordination comma rules as candidates for
comma normalisation.

4.3 Left, or right commas?
We now have a choice between normalising all ab-
sorption commas to left commas or to right commas.
We have seen that the two non-absorption classes of
comma rules both involve left commas, while ab-
sorption comma rules occur both as left and right
comma rules. We make the arbitrary choice to nor-
malise all absorption comma rules to right comma
rules, so that it is easier for corpus applications to
distinguish the most common case of punctuation
absorption from other “special” rules such as type-
changing and coordination.

Although an additional reason for normalising to
right commas rather than left commas is not evi-
dent from our analysis of the unmodified CCGbank,
an argument arises when we consider the version
of CCGbank described by Tse and Curran (2007),
which restores quote symbols to CCGbank. The re-
quoting procedure operates by recovering the po-
sitions of open and close quotes from CCGbank’s
source corpus, Penn Treebank. If the text lying be-
tween the start and end of the quoted span exactly
spans a subtree, then we can enclose that entire sub-
tree in a quoting structure. Otherwise, we attach the
open and close quotes separately. However, a com-
mon convention in English prose style is to include
the comma which offsets a span of quoted direct
speech as part of the span of quoted text.

(7) “I love hot dogs,” said Tom with relish.

In the unmodified corpus, such a comma is attached
to the right subtree, as in Figure 7a. However, this
prevents us from enclosing the span of quoted text
(including the comma), since the comma is stranded
in the right-hand subtree. Accordingly, we must
transform such a left comma to a right comma in or-



der to obtain an analysis in which the open and close
quotes correctly enclose the span of quoted text, as
in Figure 7b.

S[dcl]

S\S

S\S

said Tom with relish

,

S[dcl]

I love hot dogs

(a) Original analysis

S[dcl]

S\S
said Tom with relish

S[dcl]

”S[dcl]

,S[dcl]

I love hot dogs

“

(b) Modified analysis

Figure 7: Quote insertion and comma direction

The fact that the correct analysis of such quoting
structures requires right comma absorption suggests
that for consistency, we should normalise to right,
rather than left commas.

To summarise, our criteria for normalisation are
to process only absorption commas, leaving type-
change comma rule instances and analyses of coor-
dination unmodified. The normalisation of all ab-
sorption commas to right commas, which enables us
to remove all left comma absorption rules from the
parser, allows us to make accuracy gains and speed
reductions in the parser.

We also hypothesise that no useful information is
lost as long as we restrict comma normalisation to
the absorption cases we have identified above, since
commas involved in absorption rules do not project
dependencies, and hence cannot adversely affect the
standard dependency-based CCGbank evaluation we
describe in Section 7.

5 Transformations
Having shown that we are free to manipulate in-
stances of absorption comma rules, the transfor-
mations themselves are simple. The procedure for
comma normalisation is given in Algorithm 1.

We choose to re-attach the comma node as high
as possible in the derivation tree, as shown in Fig-
ure 8b, in the absence of a more sophisticated

Algorithm 1 NORMALISE-COMMAS(C):

for each leaf l in C do
if (l, l.sibling→ l.parent) is comma absorption
then

cur← l.parent
Delete l and its sibling
{Re-attach the comma as high as possible}
while cur is the left child of its parent do

cur← cur.parent
end while
Insert comma structure at sibling of cur

end if
end for

. . .

. . .. . .

. . .Y

Y,

X

(a) Before

. . .

. . .. . .

. . .Y

X

,X

(b) After

Figure 8: Comma movement

method of determining the depth in the left subtree
at which the comma should be restored. With refer-
ence to Figure 8, the algorithm has converted every
instance of a left absorption rule (, Y −→ Y ) to
an instance of some right absorption rule (X , −→
X). Performing this transformation on every absorp-
tion comma in the corpus achieves the desired nor-
malisation.

Figure 9 shows the distribution of occurrences of
each kind of comma rule before, and after comma
normalisation. The frequencies for two CCG rules
for coordination which differ in whether a comma,
or a lexical conjunction is used as the coordinating
word are aggregated in the second row.

Our procedure successfully re-analyses every left
absorption comma in CCGbank as an instance of a
right absorption rule. The two instances of left com-
mas which remain in the comma normalised corpus
result from mis-tokenisations in Penn Treebank: a
numeral and a determiner mis-tagged as a comma.

As a final step, we remove support for the now-
eliminated left comma rules from the C&C parser,



CCG rule Before After
, X → X 25690 2

X , → X 21990 47678
{, |conj} X → X[conj] 11466 11466

Other typechange 607 607
, NP → (S\NP)\(S\NP) 242 242

Total 59995 59995

Figure 9: Number of comma rule instances before
and after normalisation

preventing the parser from hypothesising the attach-
ment of commas to the left in the absorption case,
reserving left-attachment analyses for the special
cases of coordination and type-change structures.

6 Evaluation
We wish to determine the impact of our changes in
two respects: their effect on the accuracy of the re-
sulting parser model and on parser ambiguity, rela-
tive to the unmodified parser and corpus.

To measure the impact of the modifications on
parser accuracy, we performed the dependency-
based evaluation of Clark and Curran (2004) on the
standard development and test sets, sections 00 and
23 of CCGbank. We evaluate the performance of a
parser and model by computing the F-score over
the obtained set of predicate-argument dependen-
cies, relative to a gold standard. In the labelled
CCG evaluation, a dependency consists of a tuple
⟨H,C, i,D, l⟩, where H is the head lexical item, C
is its category with its arguments annotated with in-
dices, i is the index of the argument satisfied by
this dependency, and D is the lexical item satisfy-
ing this dependency. l is a flag distinguishing local
from long-range dependencies. The unlabelled eval-
uation is performed against reduced tuples ⟨H,D⟩.
Additional evaluation metrics are sentence level ac-
curacy: the proportion of sentences for which the
parser produced every gold standard dependency,
category accuracy: the proportion of correctly as-
signed categories, and coverage: the proportion of
sentences for which the parser obtained some span-
ning analysis. The column Auto F denotes the la-
belled F score when the C&C parser assigns its own
POS tags instead of using gold standard tags.

To gauge the impact on parser ambiguity and
memory consumption, we consider the number of

conjunctive nodes generated by the C&C parser dur-
ing the parsing process. The C&C parser uses a
packed chart representation to reduce the size in
memory of the parsing chart by allowing partial
derivations which span the same category and have
the same set of unfilled dependencies to occupy a
single cell in the chart. A conjunctive node is formed
when two single cells in the chart are merged into
another cell, as occurs when two categories are be-
ing combined. Accordingly, the number of conjunc-
tive nodes is an indication of the quantity of category
combinations performed by the parser, and hence the
degree of ambiguity encountered in parsing a given
sentence as well as the physical size in memory of
the chart data structure (Clark and Curran, 2007).

We also perform the standard evaluation 25 times
on the development and test sections to compute the
average wall-clock time for each experiment.

For the sake of comparison, we also perform the
above experiments using our transformed corpus,
but without barring the consideration of the now-
redundant rules in the parser. In the results table,
we refer to this ensemble as New*.

7 Results
Figure 10 shows that the comma-normalised corpus,
in concert with our modifications to the CCG parser
removing support for the now-redundant rules, out-
performs the baseline in ambiguity and parsing
speed without adversely affecting parser perfor-
mance or corpus coverage. This supports our claim
in Section 4 that modifying only absorption com-
mas does not remove any useful information from
the corpus.

Why does comma normalisation have such a
strong effect on parser efficiency? Any absorption
rule engenders considerable ambiguity: consider
that a comma can be attached at any internal level in
the derivation. Although the C&C parser reins in this
ambiguity by restricting the categories with which
punctuation can combine, the effect of this attach-
ment ambiguity is prominent when we consider the
number of CCGbank sentences containing punctua-
tion tokens apart from the full stop (32636 of 48934,
or 66.7% of CCGbank derivations). Our changes to
the parser reduce the number of comma absorption
rules from 19 to 9, considerably reducing parser am-
biguity in these sentences.



Labelled Auto Sent. Unlabelled Cat. Covg
Experiment P R F F acc. P R F acc. % %

Dev. set:
New 85.60 84.79 85.19 83.39 31.65 92.40 91.52 91.96 93.08 99.11

Baseline 85.52 84.69 85.11 83.36 31.93 92.37 91.47 91.92 93.02 99.06

Test set:
New 86.17 85.48 85.82 83.45 35.14 92.33 91.59 91.96 93.38 99.67

Baseline 86.03 85.37 85.70 83.24 34.70 92.28 91.57 91.93 93.27 99.63

(a) Standard CCGbank evaluation on development and test sets

Average Parsing rates Avg. Avg.
Experiment parsing time sents/s words/s conj. nodes total nodes

Dev. set:
New 89.49s 21.38 507.61 2472.77 5260.84

New* 109.97s 17.40 413.05 3446.41 7800.58
Baseline 112.73s 16.97 402.93 3349.94 7662.95

Test set:
New 56.28s 42.78 984.05 2112.78 3653.83

New* 88.30s 27.26 627.08 3087.54 6779.42
Baseline 89.32s 26.95 619.97 3010.34 6590.26

(b) Parsing time on development and test sets

Figure 10: The effects of comma normalisation on parser accuracy and speed

An unexpected result is that the new corpus
trained on the old parser (experiment New*) results
in greater ambiguity compared to the baseline. We
determined that this is caused by our naı̈ve choice
of comma attachment level (as high as possible in
the tree, the most general position). Our transfor-
mations have inadvertently added a small number of
new rules to the corpus (with reference to Figure 8,
this will occur when (X , → X) is not attested in the
corpus). On examination, in all of these newly added
rules, the non-comma argument is the result of a
unary type-change rule (such as NP→ S/(S\NP)).
We note by way of future work that we can eliminate
these added rules in this way: if attaching as high as
possible (our current criterion) would yield such a
new rule, then attach the comma at its child instead
(before such a rule has been applied).

We have developed a comma-normalised corpus
which explains the same data with fewer rules, while
slightly improving the coverage, accuracy and pars-
ing time of a parser trained on this improved corpus.
The resulting version of CCGbank treats the ubiq-
uitous comma consistently, a desirable attribute for
any NLP task which uses this valuable resource.

8 Conclusion

We believe that further improvements in parsing
speed and memory consumption are possible by

changing the representation of comma structures in
the corpus. As we observed in Section 7, when the
now-redundant rules are not disabled, parser ambi-
guity actually slightly exceeds the baseline. Chang-
ing the comma attachment level criterion may fur-
ther improve parser ambiguity and memory con-
sumption by reducing the number of rules the trans-
formation adds to the treebank.

Far from being second-class, the correct analysis
and treatment of punctuation in corpora and parsers
has practical ramifications. We would like to con-
tinue to explore punctuation-awareness in parsing in
the vein of Djordjevic et al. (2007), but from the
viewpoint of corpus design. Can we bring the ben-
efits of Nunberg’s text grammar to a regular tree-
bank by superimposing text grammar constituents
onto those of the usual lexical grammar?

We would also like to explore the cross-linguistic
treatment of punctuation in treebanks to inform pos-
sible improvements to existing corpora and derive
guidelines for the design of future corpora.

We have eliminated a source of systematic in-
consistency in a wide-coverage CCG treebank and
simplified the implementation of a CCG parser, ob-
taining considerable improvements in speed and
memory usage without sacrificing parser accuracy,
demonstrating the importance of principled, consis-
tent annotation in corpus design.



References

Murat Bayraktar, Bilge Say, and Varol Akman.
1998. An Analysis of English Punctuation: The
Special Case of Comma. International Journal of
Corpus Linguistics, 3(1):33–57.

Ann Bies, Mark Ferguson, Karen Katz, Robert
MacIntyre, Victoria Tredinnick, Grace Kim,
Mary Ann Marcinkiewicz, and Britt Schasberger.
1995. Bracketing Guidelines for Treebank II Style
Penn Treebank Project. University of Pennsylva-
nia, Philadelphia.

Ted Briscoe. 1994. Parsing (with) Punctuation etc.
Research Paper, Rank Xerox Research Centre,
Grenoble.

Stephen Clark and James R. Curran. 2004. Parsing
the WSJ using CCG and log-linear models. In
ACL ’04: Proceedings of the 42nd Annual Meet-
ing on Association for Computational Linguistics,
pages 104–111. Association for Computational
Linguistics, Barcelona, Spain.

Stephen Clark and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG
and Log-Linear Models. Computational Linguis-
tics, 33(4):493–552.

Bojan Djordjevic, James R. Curran, and Stephen
Clark. 2007. Improving the Efficiency of a Wide-
Coverage CCG Parser. In Proceedings of the
Tenth International Conference on Parsing Tech-
nologies, pages 39–47. Association for Computa-
tional Linguistics.

Julia Hockenmaier and Mark Steedman. 2005.
CCGbank: Users manual. University of Pennsyl-
vania, Philadelphia.

Julia Hockenmaier and Mark Steedman. 2007.
CCGbank: A Corpus of CCG Derivations and
Dependency Structures Extracted from the Penn
Treebank. Computational Linguistics, 33(3):355–
396.

Bernard Jones. 1997. What’s the Point? A (Com-
putational) Theory of Punctuations. Ph.D. thesis,
PhD thesis, Centre for Cognitive Science, Univer-
sity of Edinburgh, Edinburgh, UK.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1994. Building a
Large Annotated Corpus of English: The Penn

Treebank. Computational Linguistics, 19(2):313–
330.

Geoffrey Nunberg. 1990. The Linguistics of Punc-
tuation. Center for the Study of Language and
Information.

Miles Osborne. 1995. Can punctuation help learn-
ing? Connectionist, Statistical, and Symbolic Ap-
proaches to Learning for Natural Language Pro-
cessing, Lecture Notes in Artificial Intelligence,
pages 399–412.

Satoshi Sekine and Michael J. Collins.
2006. Evalb: a parseval cross-
ing brackets evaluation script. URL
http://www.cs.nyu.edu/cs/projects/proteus/evalb,
accessed 10 June 2008.

Mark Steedman. 2000. The Syntactic Process. MIT
Press. Cambridge, MA, USA.

Daniel Tse and James R. Curran. 2007. Ex-
tending CCGbank with quotes and multi-modal
CCG. Australasian Language Technology Work-
shop 2007, pages 149–151.


