
All-Topology, Semi-Abstract Syntactic Features for Text Categorisation

Ari Chanen
School of Information Technologies

University of Sydney
Sydney, Australia, 2006

ari@it.usyd.edu.au

Jon Patrick
School of Information Technologies

University of Sydney
Sydney, Australia, 2006

jonpat@it.usyd.edu.au

Abstract

Good performance on Text Classifica-
tion (TC) tasks depends on effective and
statistically significant features. Typ-
ically, the simple bag-of-words repre-
sentation is widely used because uni-
gram counts are more likely to be signif-
icant compared to more compound fea-
tures. This research explores the idea
that the major cause of poor perfor-
mance of some complex features is spar-
sity. Syntactic features are usually com-
plex being made up of both lexical and
syntactic information. This paper intro-
duces the use of a class of automatically
extractable, syntactic features to the TC
task. These features are based on sub-
trees of parse trees. As such, a large
number of these features are generated.
Our results suggest that generating a di-
verse set of these features may help in
increasing performance. Partial abstrac-
tion of the features also seems to boost
performance by counteracting sparsity.
We will show that various subsets of
our syntactic features do outperform the
bag-of-words representation alone.

1 Introduction

One of the keys to obtaining good performance out
of an automatic TC system is choosing appropri-
ate types of features. Humans can often do better

than automatic classification systems on difficult-
to-categorise corpora, probably by using the hu-
man ability to extract the meaning of documents
from the document words. Many researchers have
tried to use features that are closer to a more
semantic representation of documents. Unfortu-
nately, many of these attempts do not succeed in
doing better than bag-of-words e.g. (Moschitti
and Basili, 2004). A major problem seems to be
that the more complex a feature type is, the less
frequently it occurs. A complex feature’s occu-
rance rate in a training set will often not be signif-
icant in an unseen test set. A simple example is
how a purely bigram representation of documents
is expected to do worse than a representation of
the same documents using unigrams, as we will
demonstrate below in the Experiments section.

Attempting to use syntactic features can be ap-
pealing because the syntax of document sentences
holds clues into how an author encodes the seman-
tics into the sequence of document words. Syntax
can be thought of as the middle ground between
the lexical and semantic levels of representation.
An apt quote on this subject is “. . . the aim of syn-
tactical representation is to constitute a bridgehead
to semantics”(Schneider, 1998). The syntax of a
document is usually represented in a hyper-linear
representation such as trees. Syntactic trees are
rich in information where the nodes encode in-
formation about sentence terms and the links en-
code information about the relationships between
terms.

It is tempting to construct complex features by
extracting them from parse trees. However, there

is always the problem of feature sparsity. The
right type of complex, syntactic feature may be
closer to the semantic level and may seem to hold
out the promise of improving performance on a
TC task, yet more complex phrasal or syntactic
features suffer from “inferior statistical qualities”
(Lewis, 1992).

It is the aim of this research to try to use syn-
tactic information in TC features in such a way
that the problems of sparsity might be overcome.
In this effort, two main lines of attack are used.
First, we automatically generate a large number
(possibly hundreds of thousands or more) of fea-
tures out of dependency parse trees, in the hope
that some of these many features will turn out to
be highly discriminative TC features with a signif-
icant number of occurrences. Second, we use par-
tial abstraction of these syntactic features to bring
separate groups of features together, thus increas-
ing the feature count and alleviating sparsity.

It should be noted that sparsity may be only one
reason that complex features may not be as ef-
fective as simple features given a particular task.
Other reasons might be that some types of com-
plex features are simply noisy with respect to a
learning task. Another possible reason is that
some simple features subsume more complex fea-
tures with respect to a task. These two reasons be-
yond sparsity will not be explored in this research.

The TC task that we do our experiments on is
that of scam detection i.e. separating scam web-
sites from non-scam websites in the financial do-
main. The dataset comes from the ScamSeek
project (Patrick, 2006b).

2 Syntactic Features

This section first describes related work on syntac-
tic features and than describes the type of syntactic
feature developed for this research.

2.1 Related Work
A Word Sense Disambiguation (WSD)1 system
using syntactic features alone is described in (Lin,
2000). This system inspired the current research.
This system also adhered to the principle of only
using syntactic features discovered automatically

1See (Kilgarriff, 1998) for a description of the WSD task
and the SENSEVAL competition.

in the corpus. In Lin’s WSD system, one linked
features were formed by starting at the target-
word2 and jumping to surrounding lexical nodes
that could be reached from there. Two-link fea-
tures were formed by jumping from the endpoint
of one-link features to any non-target word nodes.

The precursor to this research, (Chanen and
Patrick, 2004), details the use of ATSAS features
for WSD. ATSAS features were based upon Lin’s
syntactic features but were designed to be more
general. Lin’s features were formed by expand-
ing a feature one link at a time in a figurative line.
The differences between Lin’s syntactic features
and those described in (Chanen and Patrick, 2004)
are: 1) Lin’s features are restricted to the linear
(e.g. under his syntactic feature definition, a fea-
ture like Figure 1(e), where three links come to-
gether in one node, would not be possible); and 2)
Lin’s do not have abstraction.

A similar use of dependency parse subtrees
is applied for producing state-of-the-art machine
translation results in (Quirk et al., 2005), where
the syntactic features are called treelets. After
parsing a sentence in the source language, parallel
treelets in the target language are then extracted to
aid in the translation task. There is a very limited
use of wildcards, only at the root of the tree.

For the experiments of this research, the syntac-
tic features were extracted from dependency parse
trees rather than from constituency parse trees.
(Quirk et al., 2005) also used dependency parsers
over constituency parsers citing the compactness
of the sentence structure representation; for exam-
ple, a verb is adjacent to its arguments in a depen-
dency parse tree, whereas in a constituency parse
tree the path from the verb to its arguments would
first need to go up the tree before going down to
the arguments.

Another WSD system using syntactic features is
described in (Férnandez-Amorós, 2004). The sys-
tem also uses parse subtrees as well as some wild-
card abstraction for increasing recall, although his
wildcards could only replace pronouns and con-
tent words. Much manual labour went into iden-
tifying the base syntactic features and the ways of
abstracting the features. This research also uses

2The word whose sense is being disambiguated

transformations on these sub-tree patterns in a fur-
ther attempt to increase recall. This research did
not achieve the same amount of automation in ei-
ther identifying syntactic tree topologies or in gen-
erating wildcard features.

Not all syntactic features are directly related to
the properties of a specific syntax tree. Some re-
searchers have developed syntactic features that
are aggregate, ratio, or statistical properties of all
the sentences in a document or group of related
documents. In one example of such syntactic fea-
tures (Uzuner, 2005), the aim of the research is
to differentiate between the works of different au-
thors mainly by use of clever aggregate measures
of parse tree properties. For instance, one set of
features suggested in this research is the number
of left-heavy, balanced, and right-heavy sentences
that can be found in a particular author’s work. By
comparing averages and ratios of such features,
powerful methods can be developed for differen-
tiating between authors. These kinds of features
have a different focus from ATSAS features, dif-
ferentiating between authors. It might be interest-
ing, though, to see if such aggregate features might
be useful in a TC task like scam detection.

2.2 ATSAS Features

The type of syntactic feature that is developed here
has been named the “All Topology, Semi-Abstract
Syntactic” (ATSAS) feature type. This type of fea-
ture is extracted from a dependency parse tree. De-
pendency parse trees are preferred to constituency
parse trees because they are more compact and ar-
guably more directly related to document seman-
tics (Schneider, 1998).

Each extracted feature is a subtree of a complete
sentence parse tree. Theoretically, such features
could consist of any number of links, but prac-
tically, a limit must be placed on the maximum
number of links that are allowed to be in the ex-
tracted features. This is because problems with
speed and memory limitations can result from the
massive number of features that tree features have
the potential to generate. With a maximum link
level of only two, the experiments for this research
generated over 10 million features. This massive
number of features, though, was reduced by dis-
carding features that occurred in less than three

documents from a training corpus.
(Chanen and Patrick, 2004) succeeded in gen-

eralizing Lin’s syntactic features to produce a
greater variety of feature topologies, not just the
linear features that Lin’s system could extract. The
current research had as a main goal of expand-
ing the use of ATSAS features beyond their use
in WSD to the TC task. In that main goal, this
research seems the largely successful. However,
the experiments in this research were not able to
demonstrate the use of non-linear syntactic fea-
tures such as the example seen in Figure 1(e) be-
cause of the memory limitations that occurred at
feature extraction time. Since a maximum of two
link features could be formed, the features ex-
tracted for this research is experiments were linear
like those in Lin’s system.

One of our important desideratum for syntac-
tic features is that they are automatically ex-
tractable. Some syntactic features that were re-
viewed eariler in the Related Work section use
manually-identified syntactic features. It is better,
if possible, to eliminate human input in identifying
the features both for greater efficiency and for the
possibility that novel new syntactic features may
be identified in places where human experts may
not think to look or have time to look.

Figure 1 shows a small parse tree and several
ATSAS features extracted from the complete parse
tree with zero through three link example features.

Each feature link is labelled with a dependency
link label e.g. subj, obj, cc. The links are joined
by nodes that consist of both a lemma and part of
speech (POS) tag. When the initial set of features
is generated, all of the lemmas referred to literal
sentence content. In a second phase of feature
generation, all combinations of a feature’s lemmas
are abstracted to a “*”. That is, each lemma in an
ATSAS can be either literal or abstract. So, for a
two-link, three-node feature, a total of seven ab-
stract features can be generated from the one lit-
eral feature for a total of eight features. By such
abstraction the hope is that some abstract features
will join groups of documents in a way that is use-
ful for the TC task. The nodes in Figure 1 do not
show any abstraction and they also do not show
the POS elements of the nodes.

One of the advantages of syntactic features like

root
main

make

guarantee
subj

qqqqqqq obj

MMMMMMM (b) 0-link feature

I make
v−ch

qqqqqqq obj

MMMMMMM

will
subj

money will
subj

you you

(a) Whole sentence DP tree (c)1-link

guarantee
obj

MMMMMMM guarantee
obj

MMMMMMM

make
v−ch

qqqqqqq
make

v−ch

qqqqqqq obj

NNNNNNNN

will will money

(d) 2-link feature (e) 3-link feature

Figure 1: (a) The complete dependency parse
tree of the sentence “I guarantee you will make
money.” (b-e) These figures show examples of
syntactic features with zero (just a node) through
3 links.

ATSAS features is that it is possible to increase
recall over features like n-grams because certain
syntactic features will allow for matching parts
of documents by skipping over some words. For
instance, the syntactic pattern in Figure 1(c) can
match, in a test document, the phrase “you will”
as well as “you definitely will” even though “defi-
nitely” is not part of the syntactic pattern.

3 Methods

3.1 Data Parsing

Before extracting the syntactic features, the data
was parsed using the Connexor dependency parser
(Järvinen and Tapanainen, 1997).

3.2 Classifier

The maximum entropy classifier was selected to
run the TC experiments, partly because publica-
tions such as (Ratnaparkhi, 1998) demonstrate that
the ME classifier turned in state-of-the-art or near
state-of-the-art results for a wide range of NLP
tasks.

An important aspect of the ME algorithm is that
it can robustly deal with a large number of fea-
tures, which is important in this research since
hundreds of thousands of features are possible (see
(Ratnaparkhi, 1998).)

The software package used to perform the
ME experiments of this research is the Megam
(MEGA Model Optimisation)3 package, which
uses an optimised version of limited memory
BFGS (Daumé, 2004).

3.3 Training and Testing

Ten-fold cross validation was used for the training
and testing evaluation process. All tests used the
same set of folds.

For any given training fold, after all the given
feature types were extracted from the train docu-
ments, all token types were removed from consid-
eration if that token type was observed in less than
three documents.

Classification accuracy was chosen as the per-
formance metric in these experiments.

Hypothesis testing was used to determine if the
TC performance between a pair of feature types
was significantly different. The paired t-test was
the specific type of hypothesis test used. A stan-
dard significant cutoff value of α = 0.05 was
utilised. The null hypothesis is that the 10-fold
cross validation determined accuracies of any two
feature tests do not differ significantly from each
other.

4 Experiments

This section describes the series of experiments
performed to determine the usefulness of the
ATSAS family of syntactic features.

3This package is described and can be downloaded at the
website: http://www.cs.utah.edu/∼hal/megam/

Feature or feature combination
Title Description
SAA Only the ATSAS features that have only ab-

stract lemmas. “AA” stands for all abstract.
Every lemma in this feature set is abstacted
to a “*”.

2g The corpus is represented only in terms of
bigrams.

1g Representation only in unigrams (bag-of-
words). The baseline feature.

1g2g A combination of unigrams and bigrams
1gS-A A combination of ATSAS and unigrams fea-

tures except for any syntactic features that
contain any abstract lemmas. Here “-A”
stands for minus abstract.

S-A All ATSAS features except for any syntac-
tic features that containing any abstract lem-
mas. In other words, this is the set of literal
syntactic features.

S All ATSAS features Including abstract and
non-abstract features.

S-NA All ATSAS features except for any syntac-
tic features that do not have abstract lem-
mas at all. Here “-NA” stands for minus
non-abstract where non-abstract means ev-
ery feature in which no lemmas are a “*”. In
other words, this is the S

¯
set minus the to-

tally literal features.
1gS-NA All ATSAS and unigram features except for

any syntactic features that do not have any
abstract lemmas at all.

1gS A combination of unigram features and all
ATSAS features

Table 1: Descriptions of the feature types used in
this paper’s experiments.

4.1 Data

A subset of the original ScamSeek (Patrick,
2006a) project’s dataset was used in this research.
This subset consists of 2130 documents. This
means that during 10-fold cross validation, each
training fold consists of 1917 documents and each
testing fold consists of 213 test documents. Out of
the total corpus, 27% of the documents are scams
and 73% are non-scams.

4.2 Features

A variety of different feature types are com-
pared in the below experiments. Table 1 gives
the abbreviated name and feature description for
each feature type (or a combination of feature
types)associated with one of the experiments.

Table 2 shows the number of token types in the
S and S-A feature types, broken down by the num-
ber of links in each feature type. This table illus-

trates how the abstraction of some elements of lit-
eral syntactic features helps multiply the number
of statistically significant ATSAS features. At first
glance, the feature counts for the S-A (literal or
non-abstract) feature type seem to be counterintu-
itive. One might expect an explosion of features as
more links are added. However, since features ob-
served in less than three documents in the training
set are removed, this causes the number of signif-
icant 2-link S-A features to be less than the num-
ber of 1-link S-A features. When one or more of
the lemmas in an ATSAS feature are abstracted,
two or more literal features that were distinct may
map to the same abstract feature. Literal features
that are not significant on their own, may produce
a significant feature through this abstraction pro-
cess. The count of an abstract feature is the sum
of the counts of the literal features that map to it.
This is the reason for the much higher number of
statistically viable features in the 2-link S feature
type, where partial or full abstraction of lemma el-
ements is allowed.

Producing abstract features can be quite mem-
ory intensive because all literal features found in
any document must be stored even if a feature
occurs in just a single document. This is neces-
sary since only after all documents have been pro-
cessed can the abstraction process join low count
literal features. The full S feature type includes
more than 10 million features after all abstract fea-
tures have been added to the literal features. This
exponential explosion of features is the reason for
not being able to perform any TC experiments us-
ing 3-link features. See the Future Work section
for ideas for including 3-link features.

Non-abstract (S-A) Abs. and Non-abs. (S)
count % count %

0-links 7873 10.6% 7873 2.2%
1-link 34466 46.4% 70610 19.8%
2-link 31895 43.0% 277301 77.9%
Total 74234 355787

Table 2: Feature counts in both the S-A experi-
mental set (which includes only features with no
abstraction) and the full set of ATSAS features in
S (which includes both abstract and non-abstract
syntactic features) as the number of links are in-
ceased. A 0-link feature is just a lemma/POS node.

5 Results

The results of the experiments are measured in
terms of the classification accuracies of each type
of feature, as well as the pairwise t-test results for
each pair of feature experiments. If the t-test re-
sults for a given pair is at or below the α = 0.05
level, then it is assumed that results for such a pair
of experiments will differ significantly. Table 3
displays the results. This table presents the num-
ber of features in each feature set and also gives
the performance of each feature type in terms of
classification accuracy. The table also gives the
paired t-test score for each pair of experimental
results. The t-test pairwise significance results
are displayed in the half-triangle part of the table
where significant results are shown in bold face.

6 Analysis

The baseline for these tests is the Results using
the bag-of-words feature, 1g, which shows an ac-
curacy of 86.9%. In order to judge the ATSAS fea-
ture type (or some derivative thereof) as a success-
ful TC feature, we need to show a significant t-test
score between one of the ATSAS feature types and
the bag-of-words features.

Experiment one used ATSAS features that elim-
inated all features that had literal lemmas (i.e. not
abstract). There are only 4,291 instances of this
subtype of ATSAS features. Not surprisingly, this
feature type did the worst with an accuracy of
82%, which was significantly worse than every
other type of feature tested. One hypothesis as to
why this feature type did not perform well is be-
cause there are too few features to perform good
classification alone. Another possibility is that the
literal lemmas in many of the ATSAS features are
important and help the best of these features two
separate the classes. In other words, having some
literal content may be helpful for forming good
features for separating classes.

Another non-syntactic feature that was experi-
mented with, was a pure bigram (2g) feature rep-
resentation. See experiment #2 in Table 3 for the
results. One can observe that the bigram repre-
sentation scores significantly below the unigrams
representation of the corpus in the TC task. Even
though bigrams often carry more meaning than a

E
xp

er
im

en
t

C
or

pu
s

fe
at

ur
es

Sc
or

e
SA

A
2g

1g
1g

2g
1g

S-
A

S-
A

S
S-

N
A

1g
S-

N
A

Ti
tle

#
1

2
3

4
5

6
7

8
9

SA
A

1
4,

29
1

82
.0

2g
2

14
1,

34
6

85
.5

0.
00

24
1g

3
20

,4
02

86
.9

0.
00

01
0.

03
72

1g
2g

4
16

1,
74

8
87

.0
0.

00
01

0.
03

41
0.

84
56

1g
S-

A
5

94
,5

76
88

.6
0.

00
13

0.
02

39
0.

18
30

0.
14

97
S-

A
6

74
,2

34
88

.8
0.

00
00

0.
00

04
0.

00
03

0.
00

48
0.

88
45

S
7

35
5,

78
7

89
.1

0.
00

04
0.

00
78

0.
07

09
0.

06
89

0.
57

97
0.

85
01

S-
N

A
8

28
1,

55
3

89
.2

0.
00

00
0.

00
08

0.
01

71
0.

00
51

0.
63

34
0.

62
49

0.
93

41
1g

S-
N

A
9

30
1,

89
5

89
.3

0.
00

02
0.

00
43

0.
04

19
0.

03
65

0.
38

59
0.

68
99

0.
13

82
0.

89
21

1g
S

10
37

6,
12

9
89

.4
0.

00
02

0.
00

20
0.

02
88

0.
02

40
0.

26
95

0.
61

35
0.

15
30

0.
81

38
0.

59
11

Ta
bl

e
3:

E
xp

er
im

en
ta

lr
es

ul
ts

w
ith

si
gn

ifi
ca

nc
e

of
pa

ir
ed

t-
te

st
s

single word, because of sparsity problems with
word combinations, bigrams usually fall short of
unigrams. A combination of unigram and bigram
feature types scores slightly higher than unigrams
alone, but not significantly so. The bigrams fea-
ture is one of the simplest complex features. This
experiment demonstrates how even simpler com-
plex features suffer from sparsity.

For the S feature type (FT) (Feature type 7 in
Table 3), although the accuracy is 2.2% higher
then the bag-of-words features, the t-test is not sig-
nificant (although it is close to being significant).
However, if the S feature type is combined with
the 1g feature type then the results are a full 2.5%
better in terms of accuracy and are significant (See
row 10 in Table 3.)

Another positive result for the ATSAS family
of syntactic features can be observed for FT S-A
(#6 in the results table). This result is positive in
that it is the most significant t-test score with the
bag-of-words feature when compared with all the
other feature types and their t-test score with the
1g FT. This is surprising for at least two reasons:
1) one of the initial assumptions for including par-
tial abstraction as a property of ATSAS features
was that the abstraction would alleviate problems
with sparsity and the syntactic features would not
do well without it; and 2) the S-A FT has only
74,234 token types from the whole corpus com-
pared to 355,787 token types for the S FT. One
possibility is that some feature selection would be
beneficial even though publications such as (Rat-
naparkhi, 1998) claim that the maximum entropy
classification method does not suffer much from
the curse of dimensionality. Another thought is
that, because tens of thousands of non-abstract
features are generated as the sentence parse trees
of documents are traversed across the entire train-
ing set, many good TC features are discovered
even though they may not take advantage of the
power of abstraction.

The results from experiment #6 suggest that ab-
straction is not necessarily needed for ATSAS fea-
tures to realise gains over simple bag-of-words.
However, we do have some evidence that abstrac-
tion in ATSAS features does help them achieve
even better performance. Experiments 8 and 9 in-
volving the feature types S-NA and 1gS-NA re-

spectively, and both have 10-fold cross validation
accuracies that allow the rejection of the null hy-
pothesis. Therefore, it can be concluded that these
feature types are significantly better than bag-of-
words alone. These two feature types do better
then experiment #6 involving the S-A feature type,
by an accuracy difference of 0.4% and 0.5% re-
spectively. Unfortunately, the difference between
the three feature types S-A, S-NA, and 1gS-NA is
not significant so further experimentation would
be required to settle the question of whether ab-
straction is needed more satisfactorily.

7 Conclusion

More complex feature types may seem desirable
because they may allow for features that are closer
to the semantic level and thus possibly better for
difficult TC tasks. However, experience has often
shown that more complex features do not usually
live up to their promise because of sparsity prob-
lems.

In this research we have proposed a family
of syntactic features, the All-Topology, Semi-
Abstract Syntactic feature family. We have exper-
imentally shown that several variations of ATSAS
feature types have significantly out-performed
bag-of-words features. Specifically, the set of
subtrees from a dependency parse tree with zero
through two links when combined with bag-of-
words gave the best performance, significantly
better than bag-of-words alone. Surprisingly, vari-
ations on ATSAS that either eliminated abstract
features or eliminated totally literal features also
did significantly better than bag-of-words alone.

8 Future Work

A logical next direction would be to expand the
ATSAS by pushing the maximum number of links
per feature from two to three. With only two links,
the syntactic features are linear just as in (Lin,
2000). With three or more links, the kinds of tree
topologies and the different combinations of de-
pendency link types would increase exponentially
along with greater possibilities of finding an inter-
esting syntactic feature for separating classes.

However, memory limitations prevented using
three links as the maximum. This problem could

be addressed in several ways. As experiment #6
involving the S-A variation suggested, ATSAS
features do not necessarily need abstraction to per-
form well. So a logical step is to simply see if
there is enough memory if three link ATSAS are
generated without any abstraction.

Another direction is to only generate ATSAS
features for TC that involve certain lemmas. For
instance, the top N (N < 500) words by informa-
tion gain or some other measure could be used. If
an ATSAS is generated but does not involve one
of the selected lemmas, then that feature would
be discarded. Another way to determine the top
terms from which the syntactic features would be
built would be to take the top terms by probability
from each topic from a Latent Dirichlet Alloca-
tion (LDA) (Blei, 2004) model. The topical terms
might differ from the information-gain terms in in-
teresting ways.

It would also be desirable to see if similar,
encouraging results can be derived from using
the same type of features on public-domain and
widely used benchmark datasets such as Reuters.

Finally, using a better feature selection strat-
egy might be advantageous. (Ratnaparkhi, 1998)
presents evidence that the maximum entropy
learning algorithm can handle a large number of
features with little degradation in performance.
However, that evidence was based on a single
dataset. It is possible that the ScamSeek dataset
might benefit from a more sophisticated feature se-
lection strategy. Feature selection might also help
separate the truly useful ATSAS features from the
background noise.

Acknowledgements

We would like to thank the Capital Markets CRC
and the University of Sydney for financial support
and everyone in the Sydney Language Technology
Research Group for their support. Also, thanks to
Sue Zeckendorf for editing help .

References
[Blei2004] David Blei. 2004. Probabilistic models of

text and images. Ph.D. thesis, U.C. Berkeley.

[Chanen and Patrick2004] Ari Chanen and Jon Patrick.
2004. Complex, corpus-driven, syntactic features

for word sense disambiguation. In Proceedings of
the Australasian Language Technology Workshop
2004, pages 1–8, Sydney, Australia, December.

[Daumé2004] Hal Daumé. 2004. Notes on CG
and LM-BFGS optimization of logistic regression.
Paper and implementation available at http://
www.cs.utah.edu/∼hal/megam/, August.

[Férnandez-Amorós2004] David Férnandez-Amorós.
2004. Wsd based on mutual information and syntac-
tic patterns. In Rada Mihalcea and Phil Edmonds,
editors, Senseval-3: Third International Workshop
on the Evaluation of Systems for the Semantic
Analysis of Text, pages 117–120, Barcelona, Spain,
July. Association for Computational Linguistics.

[Järvinen and Tapanainen1997] Timo Järvinen and Pasi
Tapanainen. 1997. A dependency parser for En-
glish. Technical Report TR-1, Department of Gen-
eral Linguistics, University of Helsinki, Finland.

[Kilgarriff1998] Adam Kilgarriff. 1998. SENSEVAL:
An exercise in evaluating word sense disambigua-
tion programs. In Proceedings of the International
Conference on Language Resources and Evaluation
(LREC), pages 581–588, Granada, Spain.

[Lewis1992] David D. Lewis. 1992. An evaluation of
phrasal and clustered representations on a text cate-
gorization task. In Proceedings of the 15th annual
international ACM SIGIR conference on Research
and development in information retrieval, pages 37–
50. ACM Press.

[Lin2000] Dekang Lin. 2000. Word sense disambigua-
tion with a similarity-smoothed case library.

[Moschitti and Basili2004] Alessandro Moschitti and
Roberto Basili. 2004. Complex Linguistic Features
for Text Classification: A Comprehensive Study.
Springer Verlag.

[Patrick2006a] Jon Patrick. 2006a. The scamseek
project - text mining for financial scams on the in-
ternet. In Selected Papers from AusDM, pages 295–
302.

[Patrick2006b] Jon Patrick. 2006b. The scamseek
project: Text mining for financial scams on the in-
ternet. In Graham J. Williams and Simeon J. Simoff,
editors, Selected Papers from AusDM, volume 3755
of Lecture Notes in Computer Science, pages 295–
302. Springer.

[Quirk et al.2005] Christopher Quirk, Arul Menezes,
and Colin Cherry. 2005. Dependency treelet trans-
lation: Syntactically informed phrasal smt. In ACL.
The Association for Computer Linguistics.

http://www.cs.utah.edu/~hal/megam/
http://www.cs.utah.edu/~hal/megam/

[Ratnaparkhi1998] A. Ratnaparkhi. 1998. Maximum
Entropy Models for Natural Language Ambiguity
Resolution. Ph.D. thesis, University of Pennsylva-
nia.

[Schneider1998] Gerold Schneider. 1998. A linguis-
tic comparison of constituency, dependency and link
grammar. Technical Report 1.1, Institut für Infor-
matik der Universität Zürich.

[Uzuner2005] Özlem Uzuner. 2005. Identifying Ex-
pression Fingerprints Using Linguistic Information.
Ph.D. thesis, MIT.

	1 Introduction
	2 Syntactic Features
	2.1 Related Work
	2.2 ATSAS Features

	3 Methods
	3.1 Data Parsing
	3.2 Classifier
	3.3 Training and Testing

	4 Experiments
	4.1 Data
	4.2 Features

	5 Results
	6 Analysis
	7 Conclusion
	8 Future Work

