
Complex, Corpus-Driven, Syntactic Features for Word Sense
Disambiguation

Ari Chanen and Jon Patrick
Sydney Language Technology Research Group

School of Information Technologies
University of Sydney

Sydney, Australia, 2006�
ari,jonpat � @it.usyd.edu.au

Abstract

Although syntactic features offer more
specific information about the context
surrounding a target word in a Word
Sense Disambiguation (WSD) task, in
general, they have not distinguished
themselves much above positional fea-
tures such as bag-of-words. In this pa-
per we offer two methods for increas-
ing the recall rate when using syntac-
tic features on the WSD task by: 1)
using an algorithm for discovering in
the corpus every possible syntactic fea-
ture involving a target word, and 2) us-
ing wildcards in place of the lemmas in
the templates of the syntactic features.
In the best experimental results on the
SENSEVAL-2 data we achieved an F-
measure of 53.1% which is well above
the mean F-measure performance of of-
ficial SENSEVAL-2 entries, of 44.2%.
These results are encouraging consider-
ing that only one kind of feature is used
and only a simple Support Vector Ma-
chine (SVM) running with the defaults
is used for the machine learning.

1 Introduction: Syntactic Features

The best features for machine learning classifi-
cation are the ones that have the most discrimi-
natory power, for the task at hand. This paper
will be discussing the use of syntactic features
(SF’s) in word sense disambiguation (WSD.) In

WSD, the task is to choose (or classify) the cor-
rect sense of the target word (the word whose
sense is to be disambiguated) given the surround-
ing text. One type of feature that is commonly
used in WSD classification systems is called bag-
of-words. Bag-of-words features are rather infor-
mation poor, only specifying the presence or ab-
sence of words in the target word’s context. SF’s,
on the other hand, are much richer in information.
Not only do syntactic features have information on
the presence of words in the context but they also
include information about the syntactic relation-
ships that hold between the target word and con-
text words in the same sentence as the target.

In order to use SF’s, a syntactic parser is needed
that produces a parse tree for every training corpus
sentence. The parse tree gives the syntactic rela-
tionships between words in each sentence. Con-
nexor parser (Järvinen and Tapanainen, 1997) was
used to annotate the data with syntactic relation-
ships in the research presented here. In this re-
search, a SF is defined as a connected group of
words from a parse tree that must include the tar-
get word. The SF includes information on each
of its words, the syntactic relationships between
them, and information on how each word relates
to the others in the tree hierarchy. The SF word
information includes the word, lemma, and part-
of-speech (POS) for each word.

The use of syntactic features in WSD might
seem to be a more effective discriminatory feature
compared to a information poor feature like bag-
of-words because of the potential for SF’s to offer
more specific information about how the sense of



root

check

spendingno

a debtor

on

Subj:

Main:

Comp:

Det:

Cnt:

Phr:

Pcomp:Det:

10

20

to

Pm:

Qua:

Sense

Mod:

there

is

Figure 1: Conexor parser tree for “There is no
sense spending 10 to check on a 20 debtor.”

a target word relies not only on the words around
it, but also on the information about the syntactic
relationships that hold between words. Alas, the
fact that SF’s contain more detail about the set of
words in a specific SF makes it less likely for a
given SF to occurred as frequently as the corre-
sponding set of bag-of-words features, thus lead-
ing to a general problem with SF’s of having lower
recall. The issue is data sparseness not whether or
not syntactic features have potential as a powerful
NLP feature. Rather, the question is how can the
strength of syntactic features be boosted. In this
paper, we explore two ways to help syntactic fea-
tures live up to their promise by:

1. Developing an algorithm for finding syntac-
tic features in the sentence that surrounds the
target-word. More specifically, the algorithm
identifies all syntactic features that 1) involve
the target word 2) contain a number of syn-
tactic links that is less than or equal to a fixed
maximum.

2. Allowing for abstract features. Syntactic fea-
tures are made up of member elements of var-
ious types. The term “abstract” here is being

used in the sense of being opposite of con-
crete. One type of member is the lemma ele-
ment. A method has been devised to exhaus-
tively enumerate all possible features where
one or two wildcards have replaced original
lemma elements. Any feature where a lemma
has been abstracted to a wildcard is defined as
abstract.

Both of these methods are shown experimen-
tally to be effective in boosting recall. The
specifics of the methods will be discussed in sec-
tion 4 and the experimental results will be dis-
cussed in section 5.

2 The WSD Task

2.1 General Description

One of the reasons that human language is far from
trivial to process is that many words in the lex-
icon hold different meanings depending on their
context. For instance, the word “sense” has five
senses as a noun and four senses as a verb accord-
ing to WordNet 2.0. Two of the five noun senses
are exemplified in the following two sentences:

1. There is a pleasing sense of justice about the
observation. (Here “sense” means “general
conscious awareness” – WordNet 2.0 )

2. There is no conceivable sense in going to
the opposite extreme. (Here “sense” means
“sound practical judgement” – WordNet 2.0)

The sense of a particular instance of a word in
a text can only be determined by the surrounding
context.

In the SENSEVAL competitions, teams of re-
searchers build word sense classifiers. The teams
are all given the same training examples of the
same set of words. The task is to build one clas-
sifier for each word that classifies an instance of
that word in context as one of its possible senses.
The training examples consist of the target-word,
along with the surrounding context which is typ-
ically several sentences. SENSEVAL is a super-
vised learning task so all of the training examples
supplied by the SENSEVAL organisers come with
a label in the form of a sense-tag that nails down
the sense of the target-word to one of the senses
listed in WordNet.



Different research groups try to outperform the
other groups by using different and hopefully su-
perior methods. There are, at least, five basic
areas in which the groups may differ 1) training
data used 2) enrichment of the training data, if
any 3) kinds of features extracted for the machine-
learning process 4) method of selecting the best
features 5) machine-learning algorithm or combi-
nation of algorithms used.

2.2 Data Enhancements by Parsing

The SENSEVAL-2 and SEMCOR sense-tagged
corpora were used as the training data in this re-
search. This data was enriched by extracting syn-
tactic information using the Connexor parser. It
is difficult to extract reliable syntactic informa-
tion without first processing the data with a good
parser. Connexor is a dependency parser, as op-
posed to a constituency parser. Any type of syn-
tactic parser that produces a hierarchical sentence
tree could be used with the syntactic feature ex-
traction methods used in this work.

2.3 Feature Selection Method

The method used for feature selection follows (Ng
and Lee, 1996). Three steps are used on all the
features found by a given feature-extractor to fil-
ter them down to the selected, final set of features
used in the machine learner. According to this pa-
per, each feature must meet the following condi-
tions to be selected:

1. The feature � must have a feature count of at
least ��������� .

2. The conditional probability for some sense 	
given the feature � must be greater than a pre-
determined probability. 
��	�����������
 ����� .

Condition one is enhanced by allowing the min-
imum count to depend on the abstraction level of
the feature where the abstraction level is defined
as the number of wildcards in a syntactic feature.

2.4 Motivation

The SENSEVAL-2 papers indicate that no one
came up with a single “magic bullet” idea that put
them out in front of the crowd, rather the teams
that did best were better able to combine known
ideas and better able to make small adjustments in

the application of these ideas. This is one of rea-
sons this study concentrates on understanding the
problems in-depth and improving a single type of
feature rather than combining many features and
using many different machine learners.

2.5 WSD Learning Infrastructure

Our WSD system is built on an extensible frame-
work for feature extraction and feature vector con-
struction. All of the experiments reported on here
were done using this in-house system. Due to lim-
ited space, the system will not be described here
but in (Bell and Patrick 2004.)

3 Syntactic Features and WSD

3.1 Dekan Lin

(Lin, 2000) describes the only other WSD system
we are aware of that makes use of syntactic fea-
tures alone. Lin’s system discovered all syntactic
features in the corpus which inspired the current
systems principle of only using syntactic features
discoved automatically in the corpus. Lin’s syn-
tactic features are less inclusive, and less complex
then those described in this paper. See section for
further comparisons. He used a nearest neighbour
(NN) algorithm to choose the best sense of the
word. Despite having simpler features, his system
showed better performance on the same task. In
the conclusion to this paper , we will speculate as
to why.

3.2 David Yarowsky et al.

(Yarowsky et al., 2001) describes the system that
did best among all competing supervised-learning
systems at SENSEVAL-2. This system is not di-
rectly comparable because they used five types
of features and a more complex, voting scheme
machine-learner. Nevertheless, it is instructive to
contrast the Yarowsky’s system syntactic features
with those being described here. Their system
identifies a closed set of syntactic feature types
first (e.g. verb/obj) and then can only extract those
types from the corpus.

3.3 David Fernandez-Amoros

(Férnandez-Amorós, 2004) is also not directly
comparable because he uses unsupervised learn-
ing. Again though, a comparison can be made be-



tween his syntactic features and those being de-
scribed here. He first parsed all the WordNet
glosses. He looked for parts of the parse trees that
contained WSD target-words and used these sub-
trees as patterns for that target-word. He also used
wildcards in place of pronouns and content words,
like the current research. He uses transformations
on these sub-tree patterns in a further attempts to
increase recall. In spirit, his research and that de-
scribed here are similar however he was not able
to achieve the same amount of automation in both
identifying syntactic tree topologies and in gener-
ating wildcard features. Also, his base-syntactic
patterns were limited to those found in the Word-
Net glosses for a given target-word.

4 Methods

The SF’s, described here, were originally inspired
by (Lin, 2000), however, a single one of Lin’s SF’s
is not capable of capturing all the different topolo-
gies of subtrees involving the target word. Lin
chose a limited yet easy to calculate set of syntac-
tic features that involve the target word. Specifi-
cally, he extracted features that always started with
the target word and included all the dependency
links and words that would be touched on the way
to any word in the sentence. Because his features
never branch but rather are a string of words con-
nected by dependency relationships we call them
linear syntactic features (LSF’s.) In his syntac-
tic features he included the lemma and POS of the
words in the feature and the dependency relation-
ships that are on the links in-between the words.
We have followed his lead in including this infor-
mation in the syntactic features.

Figure 1 shows the Connexor dependency parse
of a random (and somewhat awkward) sentence
from the SENSEVAL-2 data.

An example of a two link feature in this sen-
tence would be one that started at the target word
“sense” and then goes to the word “spending” by
following the “mod” link and then finally on to
“check” by following the “cnt” link.

From Lin’s description of his features, even
some linear features would not be extracted. For
instance, features where the target word is in the
middle of a linear path from one word to another
in this sentence would not be extracted because his

links ATSF running LSF running
total total

1 3 3 3 3
2 6 9 3 6
3 10 19 2 8
4 15 34 1 9
5 21 55 1 10
6 27 82 0 10
7 30 112 0 10
8 26 138 0 10
9 16 154 0 10
10 6 160 0 10
11 1 161 0 10

Table 3: Comparing the number of LSF’s vs.
ATSF’s found in the sentence: “There is no sense
spending 10 to check on a 20 debtor.” (from the
SENSEVAL-2 corpus)

features must start with the target word.

4.1 All-topologies Syntactic Features
(ATSF’s)

A version of Lin’s LSF’s was first implemented.
Those types of SF’s were automatically extracted
from the enhanced corpus documents. It was obvi-
ous when looking at a dependency parse tree that
while many features were identified there were
many more potential features that the LSF feature-
extractor was not able to catch. Thus, a more all-
inclusive class of syntactic feature which we have
named all-topology syntactic features (ATSF’s),
was developed.

The major motivating factor behind seeking to
extract ATSF’s was that it seemed they would be
more abundant than LSF’s. The basic idea is
that any subtree of a sentence parse tree with up
to and including a maximum number of depen-
dency links could be potentially useful as a fea-
ture. Referring to figure 1, one example of a fea-
ture that is not a LSF would be one that involves
the words (is, no, sense, spending). The links in-
volved in that feature could not be placed in a line.
To give an idea of how many more ATSF’s there
might be compared to LSF’s, table 3 shows the
feature counts in the example parse tree. The fea-
ture count is broken down into groups of features



that have the same number of dependency links in
them. In each of our experiments, a parameter sets
the maximum number of links that a feature can
have in that experiment. The best performance to
date comes from a maximum of three links. Ta-
ble 3 shows that there are five times as many three
link ATSF’s as three link LSF’s. In fact, in this ex-
ample sentence, there are no LSF’s that have more
than five links and this sentence is typical.

4.1.1 Canonical Form and Representation

The same subtree could be represented in many
different ways so a canonical form needs to be de-
fined. ATSF’s are defined as nested elements were
each element has the basic form:

�
[DRWP]::lemma=POS [children] �

Where DRWP stands for dependency relation-
ship with parent. Out of the words in a feature, the
word that is topmost in the parse tree being repre-
sented is placed first in the feature set. The DRWP
of that top-most word is deleted. The rest of the
dependency relationships further down the tree are
represented in the children element of the top tree
item. The children of a feature or sub-feature are
sorted in alphabetical order by first the POS, then
DRWP and finally by lemma.

For example, the feature involving the words
(is, no, sense, spending) is rendered as:

�
::be=v

�
comp::sense=n

�
det::no=det � � mod::spending=ing �����

4.1.2 Algorithm for Identifying ATSF’s

In (Férnandez-Amorós, 2004), the author called
the problem of systematically identifying all syn-
tactic features “challenging” and said that for lack
of time he was not able to come up with a solution
yet. We also found it challenging but were able to
come up with a divide-and-conquer/dynamic pro-
gramming solution which is presented in outline
form here.

The basic idea is to define a recursive func-
tion whose job it is to identify all possible parse
tree topologies that can be formed with a constant
number of links where all topologies must involve
a target tree node and may involve any or all of a
group of neighbour nodes and their children. Let
us call the function gen-all-topologies. It returns

a list of features of all topologies. Its arguments
are:

target-ID The unique identifier of the target node.
This would usually be the ID of the token
node for a word.

links The function returns only syntactic features
with this many links.

neighbour-IDS The neighbours of the target
node which can be used to form the features.
Notice, this is usually not all of the neigh-
bours of the target-ID

Inside gen-all-topologies there is a loop that
assigns a variable links-to-first-neighbour values
from zero to the value of the argument links. For
each iteration in this loop we try different splits of
the links between the first neighbour in the list and
the target node1 Here are the two sub-recursive
calls:

feature-list-1 =
gen-all-topologies(

first(neighbour-IDS),
links-to-first-neighbour,
neighbours*(first(neighbour-IDS))

feature-list-2 =
gen-all-topologies(

target-ID,
links - links-to-first-neighbour,
rest(neighbour-IDS))

first and rest get the first element and the rest of
the elements of a list, respectively. neighbours*
gets all of the neighbours of a node except for the
target node. Once these two sub-recursive calls
have returned we do a cross product of the two
lists meaning that each member of a list must be
combined with each of the features on the other
list yielding a number features equal to the product
of the sizes of the two lists of features. Determing
how to combine two features into a bigger feature
has a straightforward solution.

gen-all-topologies is called � times, where the
links arguments ranges from 1 to � which will ob-
tain all features for a sentence with from 1 to �
links in the features.

The implementation of gen-all-topologies
makes use of dynamic programming techniques,

1Only on the top-level call is the target node actually the
target word for the WSD problem.



as some of these sub-recursive calls will be
called more than once with the same arguments.
Therefore, the returned features from each call
are saved and simply used again if a call to
gen-all-topologies with the same arguments is
repeated. In one test, 35% of the calls were able
to get the results from the dynamic programming
results table. In practice, it seems that the feature
extraction algorithm is fairly fast, even when
extracting features with as many as five links.

4.1.3 Adding Abstraction to Improve Recall

Experiments show that the WSD system us-
ing ATSF’s outperform the mean F-measure of
44.2% (see the results table 2, second to last row.)
The best recall is 50.1%. The syntactic feature-
extractor was extended to first extract the same
features as before and, in addition, derive addi-
tional abstract features where a “*” or wildcard
might take the place of a (non-targetword) lemma.
It is important to do the bookkeeping that keeps
track of how many literal features make up an ab-
stract feature so when it comes time for feature
selection we know the count and the conditional
probability with which that abstract feature sup-
ports given senses. Table 1 and its caption give
details of a real example from the training data.

The addition of wildcard features can make an
especially noticeable difference when a sense of a
word goes from having zero features when wild-
cards are not used to having one or more features
with wildcard use. Table 1 shows such an exam-
ple.

4.1.4 Minimum Abstraction Support

Table 1 shows an example of an abstract feature
that has five literal features mapped to it. However,
many abstract features are only spawned by a sin-
gle literal feature from the training data (single-
support abstract features.) At best, such abstrac-
tion features do not add new information and at
worst they may add noise. Therefore, by default,
abstract features with only one supporting literal
feature have been removed. This aspect of the sys-
tem is called over abstraction protection (OAP.)

4.1.5 Feature Selection Strategies Based on
Abstraction Level

It could be argued, that constructing abstract
features comes with the risk of overgeneralization.
One way to control this risk is by use of OAP. An-
other way to control this risk is in the feature selec-
tion process. Section 2.3 specifies that one of the
conditions that a feature must meet to be selected
is that its count must be greater than ��� � ��� . With
the addition of abstract features, the system now
allows for different values of ����� ��� based on the
level of abstraction in a feature. If the feature has
� wildcards then that feature must have at least a
minimum count of � ��� n � � ��� to not be eliminated.

5 Experiments and Results

All results discussed below are listed in table 2.

Abstract Features: The experimental results
back the importance of abstraction. The
results table is divided into three horizontal
sections based on the number of wildcards
(0, 1, or 2) used in the experiments. The
F-measure of every 2-wildcard experiment
is greater than the the F-measure of every 1-
wildcard experiment just as the 1-wildcard’s
are greater than the 0-wildcard’s. This
seems like strong evidence that abstraction is
invaluable tool for increasing both precision
and recall.

OAP: The use of OAP is supported experimen-
tally as the system does slightly worse when
single-support abstract features are not re-
moved. Experiment number 13 has the exact
same parameters as the best performing ex-
periment 14, but in 13 OAP is off while in 14
it is on. Experiment 13 does slightly worse
than 14 probably because of the extra noise.

Basing ����� ��� on abstraction level:
Experiments 12 and 14 have all param-
eters exactly the same except ��������� ��� � and
they come up with different results lending
weight to the proposition that such control
could be useful. Further experiments need
to be run to determine the scope of variation
in results as a result of different settings of
� ��� n � � ��� for different values of � .



Best performance: Experiment 14 performed
best.

Again, Lin’s system is one of the few SENSE-
VAL systems that only uses syntactic features and
thus should be quite comparable with our system.
Lin only gave his results in the course-grained
scale. The scores in table 2 are all in terms of the
fine-grained scale. Therefore, Lin’s results are not
included in table 2. His most comparable exper-
iment achieved a coarse-grained F-score of 67%.
The best coarse-grained F-score, of the system de-
scribed here, was 61.2%.

6 Conclusion

The Yarowsky et al. WSD system achieved the
highest official score with an F-measure of 64.2%.
Their system used six types of features and a
voting-scheme machine-learner that used five base
machine-learners. Given that the system described
here is using only a single type of feature, syntac-
tic, and a single type of machine-learner, SVM,
coming within 11.1% of the top score is quite re-
spectable.

Lin’s system, that used LSF’s, performed bet-
ter then the ATSF’s despite our expectations to the
contrary. One reason that ATSF’s might not have
outperformed Lin’s features could be because Lin
is using a nearest neighbor (NN) learner and Lin
may be able to compose many simpler features to
build up a similar picture to a fewer number of the
more complex ATSF’s. If this is the case, then
ATSF’s would not seem to offer any advantages
over LSF’s. The fact that Lin’s system did signifi-
cantly better then this system might say something
about the use of nearest-neighbor , compared to
SVM’s. Lin’s system built up a case library and
thus did not forget any data quirks. This might be
important in an area like WSD , where there is not
a lot of supervised training data available, at this
point.

There are some advantages to the ATSF’s rep-
resentation of the data. If one thinks of a fea-
ture as representing properties of the data then
ATSF’s can represent such properties more com-
pactly. Several of Lin’s features might be required
to represent the same data property as one ATSF.
Especially where it is important for humans to in-

terpret the features culled from the data, the ATSF
representation might be more efficient for humans
to deal with.

Acknowledgements

The word sense disambiguation architecture was
jointly constructed with David Bell. We would
like to thank the Capital Markets CRC and the
University of Sydney for financial supported and
everyone in the Sydney Language Technology Re-
search Group for their support.

References

David F érnandez-Amor ós. 2004. Wsd based on mu-
tual information and syntactic patterns. In Rada Mi-
halcea and Phil Edmonds, editors, Senseval-3: Third
International Workshop on the Evaluation of Sys-
tems for the Semantic Analysis of Text, pages 117–
120, Barcelona, Spain, July. Association for Com-
putational Linguistics.

Timo Järvinen and Pasi Tapanainen. 1997. A de-
pendency parser for english. Technical Report TR-
1, Department of General Linguistics, University of
Helsinki, Finland.

David D. Lewis. 1992. An evaluation of phrasal
and clustered representations on a text categoriza-
tion task. In Proceedings of the 15th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 37–50.
ACM Press.

Dekang Lin. 2000. Word sense disambiguation with a
similarity-smoothed case library.

Hwee Tou Ng and Hian Beng Lee. 1996. Integrating
multiple knowledge sources to disambiguate word
sense: An exemplar-based approach. In Arivind
Joshi and Martha Palmer, editors, Proceedings of the
Thirty-Fourth Annual Meeting of the Association for
Computational Linguistics, pages 40–47, San Fran-
cisco. Morgan Kaufmann Publishers.

Fabrizio Sebastiani. 2002. Machine learning in au-
tomated text categorization. ACM Computing Sur-
veys, 34(1):1–47.

David Yarowsky, Silviu Cucerzan, Radu Florian,
Charles Schafer, and Richard Wicentowski. 2001.
The johns hopkins SENSEVAL2 system descrip-
tions.

D. Yarowsky. 2000. Hierarchical decision lists for
word sense disambiguation.



Feature Type ATSF example phrase sense of “blind”
literal

�
::bit=n

�
attr::blind=a � �

mod::of=prep � � blind bit of [unassignable]
literal

�
::fear=n

�
attr::blind=a � �

mod::of=prep � � blind fear of irrational
literal

�
::force=n

�
attr::blind=a � �

mod::of=prep � � blind force of irrational
literal

�
::hatred=n

�
attr::blind=a � �

mod::of=prep � � blind hatred of irrational
literal

�
::pursuit=n

�
attr::blind=a � �

mod::of=prep � � blind pursuit of irrational

abstract
�
::*=n

�
attr::blind=a � �

mod::of=prep � � blind * of irrational

Table 1: The first five rows above hold literal features from the training data for the word “blind.” These
5 literal features did form one abstract feature, shown in the last row. The first example was not observed
with the same sense as the other literal features. The occurrence count of the abstract feature that was
formed from the literal features is five and since four out of five of the senses of the literal feature, are
of the same sense (the sense of “blind” as being irrational), the conditional probability that this abstract
feature supports that sense is 0.80. Under the feature selection parameter settings of the experiment
that had the best performance, the minimum count for a one-wildcard feature was 4 and the conditional
probability cut-off was 66%. Therefore, the abstract feature shown above would have been selected.

Parameters Results
Experiment# links *’s ��� � n � � ��� � 
 ��� � OAP Precision Recall F-measure

0 1 2
1 1 0 3 - - 75 - 0.505 0.482 0.493
2 2 0 3 - - 75 - 0.516 0.501 0.508
3 3 0 3 - - 75 - 0.515 0.500 0.507
4 4 0 3 - - 75 - 0.515 0.500 0.507
5 4 0 3 - - 80 - 0.511 0.492 0.501
6 5 0 3 - - 75 - 0.515 0.500 0.507

7 2 1 3 4 - 75 yes 0.530 0.514 0.522
8 3 1 3 4 - 75 yes 0.527 0.511 0.519
9 4 1 3 4 - 75 yes 0.528 0.512 0.520
10 5 1 3 4 - 75 yes 0.528 0.512 0.520

11 3 2 3 4 4 51 yes 0.533 0.517 0.525
12 3 2 3 3 4 66 yes 0.538 0.521 0.529
13 3 2 3 4 4 66 no 0.539 0.522 0.530
14 3 2 3 4 4 66 yes 0.539 0.523 0.531
15 3 2 3 4 4 75 yes 0.536 0.520 0.528
16 4 2 4 4 4 75 yes 0.533 0.517 0.525
17 4 2 3 4 4 75 yes 0.534 0.518 0.526
18 5 2 3 4 4 75 yes 0.534 0.518 0.526

SENSEVAL-2 competition baseline: 0.476 0.476 0.476
SENSEVAL-2 competition mean: 0.459 0.425 0.442
SENSEVAL-2 competition best: 0.642 0.642 0.642

Table 2: Experimental results


