CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

ALTA2004
Introduction to VoiceXML

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004

The Program

Saturday, 4th December 2004

1. Spoken Language Dialog Systems

2. VoiceXML and W3C Speech Interface Framework
3. VoiceXML: Dialogs, Forms and Fields

4, VoiceXML: Development Tools

© Macquarie University 2004

The Program

Sunday, 5th December 2004

5. VoiceXML: Control Flow
6. VoiceXML: Grammars

7. VoiceXML: Mixed Initiative
8. VoiceXML: Scripting

© Macquarie University 2004

Recommended Literature

James A. Larson
VoiceXML: Introduction to Developing Speech Applications
Prentice Hall, 2003.

© Macquarie University 2004

Related Web Sites

Related Web Sites

* Speech Technology Magazine
http://www.speechtechmag.com/

* VoiceBrowser Activity — Voice enabling the Web!
http://www.w3.org/Voice/

* VoiceXML Forum
http://www.voicexml.org/

* VoiceXML Version 2.0
http://www.w3.0rg/TR/2004/REC-voicexml20-20040316/

© Macquarie University 2004

* SALTforum
http://www.saltforum.org/

* Tellme Studio
http://studio.tellme.com/

* BeVocal Café
http://cafe.bevocal.com/

* OptimTalk
http://www.optimsys.cz/news/

© Macquarie University 2004

CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

Introduction to VoiceXML
1. Spoken Language Dialog Systems

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004

What is a Spoken Language Dialog System?

* An SLDS is a computer system that you can talk to in order to carry
out some task.

* SLDSs are typically of two kinds:

— Information-provision systems provide information in response
to a query, such as a request for timetable information or
weather information.

— Transaction-based systems allow you to undertake some
transaction, such as buying or selling stocks, or reserving
a seat on a plane.

© Macquarie University 2004

Two Uses of Speech Recognition Technology

* Desktop-based:
— speaker-dependent
— large vocabulary (tens of thousands of words)
— dictation tasks

* Telephony-based:
— speaker-independent
— relatively small vocabulary (hundreds of words)
— interactive tasks

© Macquarie University 2004

Uses of Desktop-based SLDS

Dictation

E-mail

Voice control

Navigation

Instant translation

© Macquarie University 2004

Uses of Telephony-Based SLDSs

Remote banking

Travel reservation

Information enquiry

Stock transaction

Telebetting

Directory assistance

Taxi booking

Pizza ordering

© Macquarie University 2004

Traditional Interactive Voice Response Systems

Press 1 to check your account balance
Press 2 to transfer funds
Press 3 to pay a bill
Press 4 to add a payee
Press 5 to check a stock quote ...

Press 1 to transfer from savings
:> Press 2 to transfer from checking
Press 3 to transfer from cash management
Press 4 to transfer from another account

U

Press 1 to transfer to savings

Please enter the amount to transfer .
followed by the hash key <:| Press 2 to transfer to checking
Press 3 to transfer to cash management
e Press 4 to transfer to another account
Sz
© Macquarie University 2004 6

Speech-Enabled Interaction

Transfer 500 dollars from
savings to checking next
Wednesday after 3pm

~25 seconds via speech — as compared with two minutes via touch tone

© Macquarie University 2004

The Architecture of a SLDS

Speech Recognition Speech Synthesis |

1

Language Generation |

| Language Understandlng

Dialog Management

Database |

© Macquarie University 2004 8

What a SLDS Contains

Speech Recognition - analyses the audio speech input signal to
extract linguistic units such as words or phonemes.

Language Understanding - determines the meaning of the input.

Dialog Management - manages the flow of the conversation,
maintaining history and context, directing its course, accessing
the database, and formulating responses.

Language Generation - puts the responses into words.

» Speech Synthesis - produces the audio speech output signal.

© Macquarie University 2004

Database - stores the information which provides the dialog content.

Examples: SLDSs

* Early interactions with machines ¢
* Real systems today:

— YellowCab — Taxi Dispatch Demo ¢

— Manhatten ATM Finder ¢
* In the labs:

— CMU communicator 4

© Macquarie University 2004 10

What's Involved in Building a SLDS

Dialog Design

—Working out how the interaction between human and machine
will move from stage to stage.

Prompt Design
— Crafting speech messages played to a user to ask questions.
Grammar Writing

— Specifying what the user is permitted to say at any given state.

Error Handling
— Dealing with the inaccuracy of speech recognition technology.

© Macquarie University 2004

Dialog Design

* To be habitable, SLDSs must behave in natural ways.

* The naturalness of the application depends in large part on the
quality of the dialog flow.

* The dialog flow describes how the system advances from state to
state in response to the user’s inputs.

© Macquarie University 2004 12

Example: Dialog Design

[Welcome to the CSLU Pizza Parlour.]

l

[Would you like a small, medium or large pizza? }

l STORE SIZE

[What kind of topping: cheese, hawaiian, pepperoni or vegetarian?]

l STORE TOPPING

(| Would you lke a salad with that? |

l STORE SALAD

[So you want a ..., right?]

| (
Yes | No \
[Okay, your order will be ready shortly.]

Let's start again then.]—

© Macquarie University 2004

Prompt Design

Prompts are the turn-taking cues within spoken dialogs.

Prompts have two purposes:
— cause the user to speak,
— convey to the user what may be spoken.
* Design prompts to get the user say things you'd like them to say.

Careful prompt design is one way of maintaining the system’s
control of the initiative in a dialog.

© Macquarie University 2004 14

Example: Prompt Design

* Implicit versus explicit prompts:

Computer 1: Welcome to ABC Bank. What would you like to do?

Computer 2: Welcome to ABC Bank. You can check an account
balance, transfer funds, or pay a bill. What would you
like to do?

Computer 3: Welcome to ABC Bank. You can check an account
balance, transfer funds, or pay a bill. Say one of the
following choices: check balance, transfer funds, or
pay bills.

© Macquarie University 2004

Grammar Writing

* Writing a good speech grammar is a trade-off:

— broad coverage of the grammar is good because people
express themselves in a variety of ways

— but if the coverage of the grammar is too broad then
recognition accuracy is increasingly challenged.

* Essential to coordinate prompt and grammar writing.

© Macquarie University 2004 16

Example: Grammar Writing

<?xm version = "1.0"?>
<grammar xm:lang = "en" version = "1.0">
<rule id = "city" scope = "public">
<one- of >

<itenr berlin </itenp
<itemr new york </itenp
<itemp paris </itenp
<itenmr sydney </itenp
</ one- of >
</rul e>
</ granmar >

© Macquarie University 2004 17

Error Handling

* All speech recognizers will make mistakes in recognition.

* You need to think about error handling from the beginning.
* Good design raises the accuracy of even poor recognizers.
* Bad design reduces the accuracy of the best recognizers.

© Macquarie University 2004 18

Example: Error Handling

* What happens here — and how can we avoid this problem?

Computer: Stock name?
Caller: "Texaco."
Computer: Shares of PepsiCo to sell?

Caller: . umh ... No, that's wrong ..."

© Macquarie University 2004 19

CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

Introduction to VoiceXML
2. VoiceXML and W3C Speech Interface Framework

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004 1

Developing Speech Interfaces

* Speech interfaces can be developed using
— general-purpose languages (e.g. C++, Java, Python)
— special-purpose languages (e.g. VoiceXML, SALT)
* A special-purpose language can
— simplify application development,
— separate interaction code from application logic code,
— reduce network traffic,
— provide portability and simplicity,
— support prototyping and refinement.

© Macquarie University 2004

What is VoiceXML?

* VoiceXML (Voice eXtensible Markup Language)

—is an XML based markup language for specifying dialogs,

— brings the Web to telephones,

—is based upon extensive industry experience,

—was contributed to W3C by members of the VoiceXML Forum.
* Check

—W3C: http://www.w3.0rg/TR/voicexml20/

— VoiceXML Forum: http://www.voicexml.org/index.html

© Macquarie University 2004 3

History of VoiceXML

1995: Project at AT&T led to the PhoneMarkup Language (PML).
1998: ATA&T and Lucent had variants of PML.
Motorola had VoxML.
IBM had Speech ML.
HP had TalkML, and
PipeBeach had VoiceHTML.
1999: VoiceXML Forum (AT&T, IBM, Lucent, Motorola) produced
VoiceXML 0.9.

© Macquarie University 2004

History of VoiceXML

VoiceXML: Example 1

2000: VoiceXML Forum released VoiceXML 1.0.

<?xml version = "1.0"?>

<vxml version = "2.0" xmins = "http://www.w3.0rg/2001 Jvxml">
2000: VoiceXML Forum submitted the spec to W3C. f
<torm>
2002: VoiceXML 2.0 was released by the W3C. <block> Hello World! </block>
2004: VoiceXML 2.0 is a W3C recommendation. <fform>
2004: VoiceXML 2.1 is a W3C working draft. <fvxmi>
© Macquarie University 2004 © Macquarie University 2004
VoiceXML: Example 2 VoiceXML: Example 3
<?xml version ="1.0"?> :\’j;(nn:: vve(errssi%nnzzn"lé%""?;mlns = "http://www.w3.0rg/2001 vxml">

<vxml version = "2.0" xmIns = "http://www.w3.0rg/2001
<var name = "hi" expr = "Hello World!"'/>

<form id = "say_hi">
<block>
<prompt> <value expr = "hi"/> </prompt>
<goto next = "#say_goodbye"/>
</block>
</form>

<form id = "say_goodbye">
<block> Goodbye! </block>
</form>

</vxml>

© Macquarie University 2004

vxml">

<form>
<field name = "drink">
<prompt>
Would you like to fly to New York or Boston?
</prompt>
<grammar src = "destination.grxml"
type = "application/srgs+xml"/>
<ffield>
<block>
<submit namelist = "drink"
next = "http://www.../destination.py"/>
</block>
</form>
</vxml>

© Macquarie University 2004

VoiceXML Architecture

PSTN
)y Internet
Gateway Web
Phone & @ = rsnnnnnnn i an s > S
. . erver
Internet Voice Server | HTTP/VoiceXML
@ rrrrnnnnnnnnnnnnnns »
SIP
* regular phone * telephony interface * VoiceXML documents
* wireless phone * voice browser * audio files
* soft phone * automated speech recognition * service logic (CGl)
* text-to-speech synthesis * transaction processing
* touchtone * database interface
* audio play/record
© Macquarie University 2004 9

A VoiceXML Scenario

* A customer dials the phone number of a travel agent.

* The VoiceXML gateway receives the call along with information about
the dialed number.

* The VoiceXML gateway searches a database.
* |If successful, it maps the dialed number to an URL.
* This URL is the location of the agent’s main page (kuonivxml).

* The gateway retrieves the kuonivxmi page together with associated
files such as grammars and recorded audio from the HTTP server.

* These associated files may be cached on the VoiceXML gateway.

© Macquarie University 2004 10

A VoiceXML Scenario

* The VoiceXML interpreter parses and executes the VoiceXML
document.

* The interpreter steps through kuoni.vxml playing prompts, hearing
responses and passing them on to a speech recognition engine.

* If necessary, additional VoiceXML documents and associated files are
retrieved from the HTTP server.

* Recorded audio is served by specifying the URL of the WAV file.

* Communications between the voice gateway and the HTTP server
follow standard HTTP protocols.

© Macquarie University 2004 1

The W3C Speech Interface Framework

© Macquarie University 2004 12

A Voice XML Fragment

<?xml version = "1.0"?>
<vxml version ="2.0" xmins = "http://www.w3.0rg/2001 vxml">

<form id = “travel">

<field name = "destination"> <l-- VoiceXML -- >
<prompt>
Do you want to fly to
<emphasis level = "strong"> New York </emphasis> or to <l-— SSML -->
<emphasis level = "strong"> Washington </emphasis>
</prompt>
<grammar mode = "voice" root = "destination-city"> <l—- SRGS -->
<rule id = "destination-city">
<one-of>
<item tag ="NEW-YORK"> New York </item> <l— Sl -->

<item tag = "NEW-YORK"> Big Apple </item>

<item tag = "WASHINGTON"> Washington </item>
<item tag = "WASHINGTON"> The Capital </item>

</one-of>
</rule>
</grammar>
<[field>
</form>
</vxml>

© Macquarie University 2004

VoiceXML

* VoiceXML is designed for creating audio dialogs that feature

— recognition of spoken and DTMF key input,

— recording of spoken input,

— mixed initiative conversation,
— synthesized speech,

— digitized audio,

— telephony.

* lts major goal is to bring the advantages of Web-based development
and content delivery to interactive voice response applications.

© Macquarie University 2004

SRGS

* The Speech Recognition Grammar Specification defines the syntax
for representing grammars for use in speech recognition.

* The syntax of the grammar format is presented in two forms, an
XML Form and an Augmented BNF Form.

* The specification makes the two representations mappable to allow
automatic transformations between the two forms.

© Macquarie University 2004

Example: SRGS

ABNF

XML format

$destination-city =
to London {"LONDON"} |
to Paris {"Paris"}

© Macquarie University 2004

<rule id = "destination-city">
<one-of>
<item tag = "LONDON">
to London
<litem>
<item tag = "PARIS">
to Paris
</item>
</one-of>
</rule>

SSML

* The Speech Synthesis Markup Language specification provides a
markup language for assisting the generation of synthetic speech
in Web and other applications.

* SSML allows to control aspects of speech such as
— pronunciation,
—volume,
— pitch,
—rate
across different synthesis-capable platforms.

© Macquarie University 2004

Example: SSML

<prompt>

<emphasis>Welocowe</enphasis>

to the Bird Seed Ewporium.

<audio sre="rtsp://wm.birdsounds.example.com/thrush. wav™ />

e have

<gsay-as interpret-as="number">Z50</say-as>

kilogram drums of thistle seed for

<say-as interpret-as="currency">§299.95</ say-as>

plus shipping and handling this month.

<audio sre="http:/ wme.birdsounds. example . com/mourningdove wav" />
</prompt>

© Macquarie University 2004 18

Semantic Interpretation

The Semantic Interpretation language allows for attaching instruc-
tions to grammar rules that describe how to extract semantic
information from recognised utterances.

* A speech recognition grammar processor searches for a best match.

Recognising the uttered words is not enough.

What is needed is the semantic result of the recognised input.

Sl tags provide a means to attach instructions to grammar rules.

Sl will be generating results that can be integrated into EMMA.

© Macquarie University 2004

Example: Semantic Interpretation

<grammar mode = "voice" root = "destination-city">
<rule id = "destination-city">
<one-of>
<item> New York </item>
<item tag = "New York"> Big Apple </item>
<item> Washington </item>
<item tag = "Washington"> The Capital </item>
</one-of>
</rule>
</grammar>

© Macquarie University 2004 20

CCXML

The Call Control eXtensible Markup Language provides telephony
call control support for VoiceXML.

CCXML allows VoiceXML to move calls around and connect them to
dialog resources.

The two languages are separate.

They are not required in an implementation of either language.

CCXML can be used as call control manager in any telephony
system.

© Macquarie University 2004

21

Example: CCXML

<zkml wersion="1.0" encoding="UTF-5"2>
<ccxml version="1.0"-

<eventhandler:>
<!-- Letz handle the incoming call -->
<transition event="connection.CONNECTION_ALERTING™ name="ewt'">
<log expr="'The caller ID is ' 4+ ewt.callerid + '.'"/>
<if cond="ewt.callerid == '8§315551234'">
<accept/>
<elsess
Lreject/>
</1iEx
</transition-
<!-- Lets handle the call being answered -->
<transition event="comnection.CONNECTION CONNECTED'-
</transition-
</Jeventhandlers
</coxnl>
© Macquarie University 2004 22

Example: EMMA

* The Extensible MultiModal Annotation markup language is used for
providing semantic interpretations for a variety of input modes:

—speech,
— natural language text,
— graphical user interface,
—and electronic ink input.
* The markup will be used as a standard data interchange format.
* The markup will be automatically generated by interpretation
components to represent the semantics of users' inputs.

© Macquarie University 2004

23

EMMA: Example

Utterance: “Zoom in here” Area circled by pen

<emmainterpretation> <emmacinterpretation >

<command> <area>(200,200), (200,400), (400,400),
<zoom><location/></zoom> (400,200)</area>
</command> ;

i 2 </emma:interpretation>
</emmainterpretation>

Integration of information

<emma:interpretation>
<command>
<zoom>
<area> (200,200), (200,400),
(400,400), (400,200)</area>
<fzo0m>
</command>
</emma:interpretation>

© Macquarie University 2004 24

CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

Introduction to VoiceXML
3. VoiceXML: Dialogs, Forms and Fields

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004

VoiceXML Documents

* A VoiceXML document forms a conversational finite state machine.
* The caller is always in one conversational state, or dialog, at a time.
* Each dialog determines the next dialog to transition to.

* Transitions are specified using URIs, which define the next
document and dialog to use.

* Execution is terminated
—when a dialog does not specify a successor, or
—if it has an element that explicitly exits the conversation.

© Macquarie University 2004

Dialogs

* Dialog elements present information and collect data.
* There are two kinds of dialog elements:

—forms

—menus.

© Macquarie University 2004

Forms

* Forms collect values for a set of field item variables.

* Afield specifies an input item to be gathered from the user.
* Grammars define the allowable inputs for fields.

* Platform throws events if the input is out-of-grammar.

* Actions are performed when field items are filled.

© Macquarie University 2004

Example: Form

<form id = "pizza-ordering">

<field name = "size">

<prompt> What pizza size would you like? </prompt >
<grammar src = "size.grxml" type = "application/srg s+xml"/>
<catch event = "help">
You can choose a small, medium, large or extra-larg e pizza.

</catch>

<ffield>

<block>

<submit next = "http://www..../pizza.py" namelist = "size ..."I>

</block>

</form>

© Macquarie University 2004

Menus

* Menus present the caller with a set of options.

Transitions to another dialog are based on a choice.

The <menu> element is a shortcut for a form with only one field.
* It is a convenient way to ask the user to pick one option from a list.

© Macquarie University 2004 6

Example: Menu

<Henu-
<choice next="http://ww.sports.example. com/veml/start. vxml">
<grammar sre="sports.grxml" type="application/srgstxml"/>
Sports
</choice>
<choice next="http://wwm.weather.example.com/intro.vxml">
<grarmmar src="weather.grxml" type="application/srgs+xml"/>
Teather
</choice>
<choice next="http://wnm.stargazer.example.com/voice/astronews . veml™>
<grammar src="astronews.grxml” type="application/srgs+xml”/>
Stargazer asstrophysics
</choice>
</menu>
</vrml>

© Macquarie University 2004

VoiceXML Elements

* So far, we used the following VoiceXML elements:
—<vxml> top-level element in each VoiceXML document
—<form> adialog for presenting information and collecting data
— <prompt> queues speech synthesis and audio output to user
— <field> declares an input field in a form
—<catch> catches an event
—<block> a container of (non-interactive) executable code

© Macquarie University 2004 8

VoiceXML Elements

—<menu> a dialog for choosing amongst alternative
destinations
— <choice> defines a menu item

— <grammar> specifies a speech recognition or DTMF grammar

— <goto> goes to another dialog in the same or different
document
— <submit> submits values to a document server
© Macquarie University 2004 9

Example: Are You Sleepy?

Computer: Are you sleepy?

User: <says nothing>

Computer: Hey, don't sleep!

User: Ooops.

Computer: Say 'yes' or 'no".

User: Yes.

Computer: So, you are sleepy, me too.
© Macquaric Unversty 2004

Example: Are You Sleepy?

<?xml version = "1.0"?>
<vxml version ="2.0" xmins = "http://www.w3.0rg/2001 xml">

<form id = "start">
<field name = "answer">

<prompt> Are you sleepy? </prompt>
<grammar src = "yesno.grxml" type = "application/srg s+xml"/>

<noinput> Hey, don't sleep! </noinput>
<nomatch> Say 'yes' or 'no'. </nomatch>

© Macquarie University 2004 1

Example: Are You Sleepy?

<filled>
<if cond ="answer =="'yes">
So you are sleepy. Me too.
<else/>
So you are not sleepy. But | am.
<[if>
<ffilled>

<[field>
</form>
</vxml>

<l-- Note: "answer =='yes'" is a JavaScript express

© Macquarie University 2004

ion! -->

More VoiceXML Elements

* The last example introduced the following new elements:

— <noinput> catches a noinput event
— <nomatch> catches a nomatch event
— <filled> actions executed when fields are filled
— <if> simple conditional logic
—<else> used in <if> element
© Macquarie University 2004 13

SRGS: yesno.grxml

<?xml version = "1.0"?>

<grammar root = "main" version = "1.0">
<rule id = "main" scope = "public">
<one-of>
<item tag = "yes"/> <ruleref uri = "#yes"/> </item>
<item tag = "no"/> <ruleref uri ="#no"/> </item>
</one-of>
</rule>

© Macquarie University 2004 14

SRGS: yesno.grxml

<rule id = "yes">

<one-of>
<item> yes </item>
<item> yeah </item>
<item> yep </item>
<item> sure </item>

</one-of>

</rule>

<rule id = "no">
<one-of>
<item> no </item>
<item> not </item>
<item> nope </item>
</one-of>
</rule>
</grammar>

© Macquarie University 2004 15

SRGS: Comments

* The grammar is in XML form.

The attribute "root" defines the root rule of the grammar.

A rule definition is represented by the <rule> element.

A public-scoped rule may be referenced in the rule definitions of
other grammars.

The <one-of> element identifies a set of alternative elements.

Each alternative expansion is contained in a <item> element.

Tags contain content for semantic interpretation.

© Macquarie University 2004 16

Example: Weather Information

Computer: Welcome to the weather information service.

Computer: What state?

User: Help!

Computer: Please speak the state for which you want the
weather.

User: New South Wales.

Computer: What city?

User: Gosford.

© Macquarie University 2004

Attributes and Values

* VoiceXML elements have attributes with specific values:

<?xml version = "1.0"?>
<vxml version ="2.0" xmins = "http://www.w3.0rg/2001/vxml">

<formid__ ="weather_info">

<block> Welcome to the weather information service. </block>

<field name___ =" state">
<prompt> What state? </prompt>
<grammar src__ = "state.grxml"
type "application/srgs+xml"/>
<catch event ="help">
Please speak the state for which you want the weath er.
</catch>
<ffield>

© Macquarie University 2004 18

Attributes and Values

<field name =" city">
<prompt> What city? </prompt>
<grammar src__ = "city.grxml"
type = "application/srgs+xml"/>
<catch event ="help">
Please speak the city for which you want the weathe
</catch>
</field>
<block>
<submit next = "cgi-bin/weather.py"
namelist =" city state"/>
</block>
</form>
<fvxml>

© Macquarie University 2004

CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

Introduction to VoiceXML
4, VoiceXML: Development Tools

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004

VoiceXML Implementations

* Web-based VoiceXML development tools:
— Tellme at http://studio.tellme.com
—BeVocal at http://café.bevocal.com
— HeyAnita at http://www.heyanita.com
* VoiceXML platforms and graphical development tools:
— Nuance at http://www.nuance.com
— OptimTalk at http://www.optimsys.cz/news/
— Open VXI VoiceXML at http://sourceforge.net/projects/openvxi/

© Macquarie University 2004

Tellme Studio

Tellme studio is a suite of Web-based VoiceXML development tools.

Tellme studio enables you

—to build, test, and publish VoiceXML applications

— without buying or installing any hardware or software.
* By registering, you can develop your application for free.

But check out first the VoiceXML elements supported by the Tellme
voice interpreter.

© Macquarie University 2004

MyStudio

You're signed in as 28759, MyStudio
_sisnioun |
3
@" i (It's here.

—Home B (R

MyStudia [Scratchpad

Documentation

WoiceXML 2.0 Elements

“oiceXML Tutorials Type some VoicexML below, and call 1800555 VXML 1o preview it. [International | /olP %]
Advanced Topics)

Grammars WoiceXML Scratchpad name: |My Scratchpad what's this?
Advanced Metwork Senices |[<7wxml version = "1.0m72» -

<vxml version = "I.0">

Tools <form>

Scratchpad <blocksr

Debug Log <prompts

Syntax Checker Welcome to Ljax Travel

Grammar Toals </ prompr

WoicexhL Terminal </hlock>

Record by Phone <field name = "UserName'>

<prompt>

Resources Jay your user name

Code Library </ prompt>

Audio Library <grammar type = "application/srgs+xml"

Utilities version = "1.0">

© Macquarie University 2004

VoiceXML Scratchpad

Application URL Scratchpad

() G

Application URL

Type soma YoiceXML below, and call 1800555 VXML to preview it [International | Yol &
0 Your change was successiul. The syntax checkerwas run. (Mo errors detected inyour YoiceXML)
VoiceXML Scratchpad name: |My Scratchpad T hats this?
<7x¥wml version = "1.0"7> =
<wxml version = "2.0">
<LOorm>
<block:>
<prompti>
Telocome to Ajax Trawvel
</ prompt>
</blocksr
<field name = "UserMName'":>
<promwpti>
Say your user name
</ prompt>
<grawmmar type = "application/srgs+xmlT
wversion = "1.0">
«<rule id = "alser™ scope = "public'> LI

© Macquarie University 2004

Application URL Scratchpad
£ G

Enter the URL to your WaiceXML helow, and call 1800555 VXML to praview it [Intamational | olP &)
Application URL what's this?

|http.f,'\md\r\nt.\cs.mq.edu.au,a""rulfs,a‘ajaxvxm\

© Macquarie University 2004

VoiceXML Terminal

VoiceXML Terminal

() = 2

= itelcome to VoicexML Terminal =

WoicexnL Terminal lets vou test your voice application phone-free!

Specify the application you want to test in your Application URL or Scratchpad,
and then click start. Simulate user input by entering a walid return value

from an active grammar. Click 7 for mare information.

=audio= Walcome to Ajax Travel =faudio=

=audio= Sayyour user name =faudio=

Sam

=audio= Do youwantto travel by air, rail, or hoat?=/audio=

Input: IAM

W8 You now use qramimar phrases as input.

Grammar Scratchpad: GSL Grammar

© Macquarie University 2004

Scratchpad Grammar URL | Parse | Generate

=

Grammar Scratchpad
@ Your grammar has successfully compiled.
Enter a grammar below, and click "Checlc Grammar” to verify it

<grawmar type="application/x-gsl” mode="voice":>
<! [CDATA[
[
[sam] {<name "samuel'sl
[fred] {<name "frederick">}
1
11>
</ gramuar >

© Macquarie University 2004

Grammar Phrase Checker

Scratchpad Grammar URL | Parse
= 5

Grammar Phrase Checker

Generate | DTMF

This tool allows you to test phrases against your grammar to determine if they will be recognized and, if so,
display the returned value

The last grammar checked with either the Scratchpad or Grammar URL will be used
Enter the phrase you'd like to check in your grammar:

Isam

Did You Know?

Did you know that you can adjust the size of your Scratchpad in Edit My Preferences?

© Macquarie University 2004

Grammar Phrase Checker: Results

Scratchpad Grammar URL | Parse
2
Grammar Phrase Checker

Generate | DTMF

This tool allovs you to test phrases against your grammar to determine if they will be recognized and, if so,
display the retuned value

The last grammar checked with either the Scratchpad or Grammar URL will be used.

Enter the phrase you'd like to check inyour grammar,
Isam

1. {=name samuel=}

Did You Know?

Did you know that you can adjust the size of your Scratchpad in Edit My Preferences?

© Macquarie University 2004

Grammar Phrase Generator

Scratchpad Grammar URL | Parse | Generate
=]

Grammar Phrase Generator

This tool displays phrases your grammar 1= capable of recognizing. (You might be surprised!) You can wiew all
phrases your grammar can recognize, or just generate a random sampling.

The last grammar checked with either the Scratchpad or Grammar URL willl be used
& Exhaustive (up to 100 phrases)

© Random sample of 10 {up to 100}

© Macquarie University 2004

Grammar Phrase Generator: Generated Phrase

Scratchpad Grammar URL | Parse | Generate | DTMF
= 2
Grammar Phrase Generator

This tool displays phrases your grammar is capable of recognizing. (You might be surprised!) You can wiew all
phrases your grammar can recognize, or just generate a random sampling.

The last grammar checlked with either the Scratchpad or Grammar URL will be used.

& Exhaustive {up to 100 phrases;)

€ Random sample of 100 {upto 100}

Generated phrase Results
1.5am {=name samuel=}
2.fred

{=name frederick=}

© Macquarie University 2004

Connecting to Tellme Studio

* To preview your application, you can use a phone and call
— (408)-678-4465
or you can use a soft phone such as X-Lite and call
—sip:8005558965@sip.studio.tellme.com

© Macquarie University 2004

BeVocal Café

© Macquarie University 2004

* BeVocal Café offers similar functionality as Tellme Studio.
* BeVocal Café is available at

— http://cafe.bevocal.com
* BeVocal Café comes with a

— VoiceXML Checker

— VocalScripter

— Grammar Compiler.

Tools & File Management

A Bevocal Café: Tools & File Management - Microsoft Internet Explorer 10 x|

Fle Edic View Favorites Tools Help ‘

GBack - = - (@) (2] 4| Qoearch [GaFavortes Fueda B | BN S = H

Addvess [&] http:jcafe bevocal.comjtoolsftosls.jsp =] Pe ‘L\nks »

[T % Sign Uj Im
|‘ufe|Q)J| s, LD Call Now to Test Your App: 1.877.33 VOCAL

nternational: 1.408.907.7328

Logout .

H';r:: Tools & File Management p—
Home » Taols & File Management 4

Welcome Advanced search

Tools & File
Management Local File Based Application Development

Upload File: | Browse Upload

+ WoiceXML Checker
* Wocal Player
 Log Browser

+ Wocsl Debugger
 Trace Tool

VHML Files

+ Yooal Soripter valid _ Hame
* Grammar Compiler
+ Port Estimator

+ Update Account

Date size Adtivate Delete
08/27/03 00102 1275 Activate || Delete

DE/1/03 21133 1037 Activate | Delete | —
DEF13/03 21136 152 Activate | _Delete

Resources
Deployment
Documentation

Remote URL Based Application Development
support

Account Info Add URL: Add
Account 1119533
Trital Files 3

‘@ [B Local intranet v

© Macquarie University 2004

VoiceXML Checker

© Macquarie University 2004

<7xml wersion="1.0"7x -
= IDOCTYPE wxrnl PUBLIC "-//Bevocal IncdfVoice XML 2.0//EN" "hitp:/fcafe bevocal comslibraries /didSvx
<wxml version="2.0" xmlns="http/fwww w3 .0rg/2001 v wml" =
«farm=
<grammar type="application/x-gs/"=
<I[CDaTA[
Request

(
7L liked (tell me)]

Service
rand ?Service

*and ?Service hd
4 | »

Check I Save | Clear | Reset I
Enter a file name(.vxml,.js, txt, .grammar): I Save As... |

Vocal Scripter

| Dialing in progress
Connection establizhed
OUTPUT -+ ‘What service would you like?

3
' -
‘Clear screen g
i

" Record user input

[& Interactive mod £

User input: |
e

© Macquarie University 2004

OptimTalk

* OptimTalk
—is a free VoiceXML platform for desktop computers,
— consists of a set of libraries,
— provides only a command line interface.
* These libraries support:
— VoiceXML 2.0,
—SRGS,
—SSML,
— Semantic Interpretation.

© Macquarie University 2004 18

OptimTalk: Command Line Interface

* OptimTalk provides a command line interface
C:\ Opti niral k\ bi n>optintal k_test.exe <vxn doc>

whereas
<vxm doc>
is either a file name or a URI of a VoiceXML document.

* If you are fetching a document via a URI, the document needs to be
on a Web server (html directory).

* Make sure that the VoiceXML document is readable.

© Macquarie University 2004

OptimTalk: Input and Output Components

* Input and output components can be configured via a config. file:
optimtalk_test.cfg
* For example:
output component using Microsoft Speech API 5.1 to produce
speech output. The output is also sent to the console

out put =com opt i nt al k. cons_and_sapi _out put

input component which uses keyboard for input
i nput =com opti nt al k. keyboar d_i nput

© Macquarie University 2004 20

CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

Introduction to VoiceXML
5. VoiceXML: Control Flow

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004

Application Root Document

* A VoiceXML application consists of one or more documents.
* These documents share an application root document.

* The application root document is (and remains) loaded
—when the caller interacts with a document in the application

—when the caller transitions between documents in the
application.

* The application root document is unloaded
—when the caller transitions to a document that is not in the
application.

© Macquarie University 2004

Application Root Document

* While the application root document is loaded
— its variables are available to the other (leaf) documents
— its grammars remain active for the duration of the application.

© Macquarie University 2004

Transition between Documents

root I
n I p D2 Dy

Transitioning between documents in an application

© Macquarie University 2004

Executing a One-Document Application

* Normally, each document runs as an isolated application.

* Documents are composed of dialogs (= forms and menus).
* Document execution begins at the first dialog by default.

* As each dialog executes, it determines the next dialog.

* When a dialog does not specify a successor dialog, document
execution stops.

© Macquarie University 2004

Executing a One-Document Application

<?xml version = "1.0"?>

<vxml version ="2.0" xmins = "http://www.w3.0rg/2001 Ivxml">
<var name = "hello" expr ="'Hello World!"'/>
<form>
<block>

<value expr = "hello"/>
<goto next = "#say_goodbye"/>
</block>
</form>
<form id = "say_goodbye">
<block>
Goodbye!
</block>
</form>

</vxml>

© Macquarie University 2004

Executing a Multi-Document Application

* If you want a multi-document application, you select
— one document to be the application root document, and
— the rest to be application leaf documents.

* Each leaf document names the root document in its <vxml>
element using the "application" attribute.

© Macquarie University 2004

Executing a Multi-Document Application

* During interpretation one of the following conditions always hold:
* Condition 1:

The application root document is loaded and the caller is
executing in it: there is no leaf document.

* Condition 2:

The application root document and a single leaf document are
both loaded and the caller is executing in the leaf document.

© Macquarie University 2004

Executing a Multi-Document Application

Example Dialog

* Application root document (app-root.vxml) Computer: Would you like to say Ciao?
<?xml version = "1.0"?> Caller: Si. <"yes" or "no" is expected here>
<vxml version ="2.0" xmins = "http://www.w3.0rg/2001 xml"> Computer: | did not understand what you said.
<a platform-specific default message>
* Leaf document (leaf.vxml) ,
_ Computer: Shall we say Ciao?
<?xml version = "1.0"?> .
<vxml version = "2.0" xmins = "http://www.w3.0rg/2001 fvxml” Caller: Ciao. <"yes" or "no" is expected here>
application = "app-root.vxmi*> Computer: | did not understand what you said.
Caller: Operator.
Computer: <goes to operator.vxml, which transfers the call>
© Macquarie University 2004 9 © Macquarie University 2004 10
Leaf Document (leaf.vxml) Leaf Document (leaf.vxml)
<?xml version = "1.0"?> <filled>
<vxml version = "2.0" xmIns = "http://www.w3.0rg/2001 fvxml* <if cond = "answer">
application = "app-root.vxml|"> <exit/>
o . </if>
<form id = "say_goodbye"> <clear namelist = "answer"/>
<field name = "answer"> <ffilled>
<grammar type = "application/srgs+xml" <ffield>
src = "/grammars/boolean.grxml"/> <fform>
<prompt count = "1"> <Juxmi>
Would you like to say <value expr = "application.bye "[>?

</prompt>
<prompt count = "2">

Shall we say <value expr = "application.bye"/>?
</prompt>

© Macquarie University 2004

© Macquarie University 2004 12

Application Root Document (app-root.vxml)

<?xml version = "1.0"?>
<vxml version ="2.0" xmins = "http://www.w3.0rg/2001 xml">

<var name ="bye" expr ="Ciao"/>

<link next = "operator.vxml|">
<grammar type = "application/srgs+xml"
root = "root"
version = "1.0">
<rule id = "root" scope = "public">
operator
</rule>
</grammar>
</link>

</vxml>

© Macquarie University 2004

Comments

* Inour example:
1. The "leaf.vxml" document is loaded first.
2. The "app-root.vxml" document is loaded.
3. The variable "bye" is created in "app-root.vxml".
4, The link "operator.vxml" is defined in "app-root.vxml".
5. The dialog starts in the "say_goodbye" form of "leaf.vxml".

© Macquarie University 2004

Benefits to Multi-Document Applications

* Root variables <var> are available for use by the leaf documents.

* Root document <property> elements can be used to specify
default values for properties used in the leaf documents.

* Property values affect platform behavior, for example:
— recogpnition properties (confidencelevel, sensitivity, etc)
— prompt and collect properties (bargein, timeout, etc)
— fetching properties (fetchaudio, fetchtimeout).

© Macquarie University 2004

Benefits to Multi-Document Applications

* ECMAScript code can be defined in root document element <script>
and used in the leaf documents.

* Root document <catch> elements define default event handling for
the leaf documents.

* If a root document has a document-level link <link>, its grammars
are active when the user is in a leaf document.

© Macquarie University 2004

Form ltems

* Form items are visited by a form interpretation algorithm (FIA).
* There are two types of form items:

—input items (e.g. <field>)

— control items (e.g. <block>)

* Input items direct the FIA to gather a result for a specific element.

* Control items tell the FIA to execute code or to initialize a specific
behaviour.

© Macquarie University 2004

Input ltems

* An input item specifies a form item variable (e.g. name = "answer ").
* Input items consists of:

— <field> declares an input field in a form

— <record> records an audio sample

— <transfer> transfers a caller to another destination
— <object> interacts with a custom extension

— <subdialog> invokes another dialog as a subdialog

© Macquarie University 2004 18

Control Items

* There are two types of control items:
— <block> executes a sequence of procedural statements
— <initial> controls the initial interaction in mixed initiative.

* The <block> control item has an implicit form item variable:
—it is set to true just before the block is interpreted.

* The <initial> control item has an explicit form item variable:
— it is set to true, if at least one input item variable is filled.

© Macquarie University 2004

Form Interpretation Algorithm

* Forms are interpreted by an implicit form interpretation algorithm.
* The form interpretation algorithm has a main loop that

— selects a form item

—and then visits it.
* The selected form item is

—the first in document order

—whose guard condition is not satisfied.

© Macquarie University 2004 20

Form Interpretation Algorithm

* Interpreting a form item generally involves:
— selecting and playing one or more prompts
— collecting a user input or throwing of some event
— interpreting any <filled> actions.

© Macquarie University 2004

21

Form Interpretation Algorithm

* The form interpretation algorithm ends
—when it interprets a transfer of control statement
(e.g. <goto> or <submit>)
—when no form item remains to select
(implied <exit>).

© Macquarie University 2004

22

Customizing the Form Interpretation Algorithm

* The FIA can be customized in several ways:

— assigning a value to a form item variable (<assign>)
— setting a form item variable to undefined (<clear>)

— specifying the next form item to visit (<goto>).

© Macquarie University 2004

23

CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

Introduction to VoiceXML
0. VoiceXML: Grammars

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004

Grammar Standard

* No standard SR grammar format was available for VoiceXML 1.0.
* Voice browser developers had to define the grammar and format.
* This problem was rectified with the
Speech Recognition Grammar Specification
introduced with VoiceXML 2.0.
* Check: http://www.w3.0rg/TR/2004/REC-speech-grammar-20040316/

© Macquarie University 2004

Grammar Formats

* The Speech Recognition Grammar Specification provides two formats:

XML and ABNF (a plain text representation).

* VoiceXML 2.0 platforms must support the XML format.
* VoiceXML 2.0 platforms should also support the ABNF format.
* Both grammars have the power of a Context Free Grammar'.

* The two formats are automatically mappable.

1 A grammar processor that does not support recursive grammars has the expressive power

of a Finite State Machine or regular language.

© Macquarie University 2004

XML Format

<?xml version = "1.0"?>
<grammar mode = "voice" xml:lang ="en-US" root ="n ame"
type = "application/srgs+xml" version = "1.0">

<rule id = "name">
<ruleref uri = #firstName"/>
<ruleref uri = #lastName"/>
</rule>

<rule id = "firstName">
<one-of>
<item> Marc </item>
<item> John </item>
</one-of>
</rule>

© Macquarie University 2004

XML Format

<rule id = "lastName">
<one-of>
<item> Miller </item>
<item> Yates </item>
<item> King </item>
</one-of>
</rule>

</grammar>

© Macquarie University 2004

ABNF Format

<grammar type = "application/srgs">

#ABNF 1.0;
language en-US;
mode = voice;

root $name;
$name = $firstName $lastName;
$firstName = Marc | John;
$lastName = Miller | Yates | King;

</grammar>

© Macquarie University 2004

Grammar Formats

* VoiceXML 2.0 platforms may support vendor-dependent formats:

— Nuance Grammar Specification Language (GSL),
— Java Speech Grammar Format (JSGF).

* OptimTalk supports the XML format.

* Tellme Studio and BeVocal also support GSL.

© Macquarie University 2004

Using Grammars

* The <grammar> element is used to provide a speech grammar.

* The <grammar> element can be used to specify an inline or an
external grammar.

* However, we can distinguish three uses of grammars:
— built-in grammar
— inline grammar or
— external grammar (<grammar src ="URI">).

© Macquarie University 2004

Built-in Grammar

<field name = "ticket_num" type = "digits">

<prompt> Read the 12 digit number from your ticket. </prompt>
<help> The 12 digit number is to the lower left. </ help>
<filled>
<if cond = "ticket_num.length !=12">
<prompt> Sorry, | didn't hear exactly 12 digits. </ prompt>
<assign name = "ticket_num" expr = "undefined"/>
<[if>
<ffilled>
</field>
© Macquarie University 2004 9

Inline Grammar

<grammar mode="voice” xml:lang="en-US" version="1.0" root="command”>
<l-- Command is an action on an ohject ——>
<!-- e.g. "open a window" -->
<rule id="command” scope="public>
<ruleref uri="#action"/> <ruleref uri="#object"/>
</rule>

<rule id="action">
<one-of>
<item> open </item>
<item> clase </item>
<item> delete </item>
<item> mave </item>
</one-of>
</rulex>

<rule id="ohject">
<item repeat="0-1"3
<one—of> <item> the </item> <item> a </item> </one—of>
</ item>
<one-of>
<item> window </item>
<item> file </item>
<item> menu </item>
</one—of>
</rulex>
</ g anmar >

© Macquarie University 2004 10

External Grammar

<?xml version = "1.0"?>
<grammar version = "1.0">

<rule id = "drink" scope = "public">
<one-of>
<item tag = "coke"> coca cola </item>
<item> coke </item>
<item> sprite </item>
<item> fanta </item>
</one-of>
</rule>

</grammar>

© Macquarie University 2004 1

Operators

* The SRGS defines a set of operators.
* Operators allow us to recognise complex word patterns.
* For example, the caller might say one of the following things:
—Um, my name is Marc Miller.
— My name is Miller.
—Um, yeah, well, 'am Marc Miller.
but we are only interested in the last name.

© Macquarie University 2004 12

Repeat

<rule id = " name" >

<item repeat =
<item repeat =
</item>

<one-of>
<item repeat =
<item repeat =
</one-of>

<item repeat =
<ruleref uri =
</item>
<ruleref uri =
</rule>

© Macquarie University 2004

"0-1 "> um
"0-1" > yeah well </item>

"0-1" > my name is </item>
"0-1">I'm </item>

"ot >
" #firstName " />

" #lastName " />

/ero or More

* Matching zero or more instances of a token:

<rule id = " mood" >
| am <item repeat = " 0- " > very </item> lucky
</rule>

* For example:
— | am lucky.
— | am very lucky.
— 1 am very very very lucky.

© Macquarie University 2004

One or More

* Matching one or more instances of a token:

<rule id =

| am <item repeat =

</rule>

* Examples:

" mood" >

— | am very lucky.
— | am very very very lucky.
— But not: | am lucky.

© Macquarie University 2004

"1- "> very </item> lucky

Token Ranges and Exact Matches

<rule id = "increase ">
<item repeat = " 1-5 " > Please </item>
increase my salary

</rule>

<rule id = "increase ">
<item repeat = " 5" > Please </item>
increase my salary

</rule>

<rule id = "increase ">
<item repeat = " 5-" > Please </item>

increase my salary
</rule>

© Macquarie University 2004

Nuance Grammar Specification Language (GSL)

GSL is still widely used in industry.

* Nuance provides development tools (Nuance Grammar Builder).

GSL grammars can be compiled.

Probabilities can be assigned to phrases.

© Macquarie University 2004

But GSL syntax uses characters that are reserved by XML.

Therefore, in-line grammars must be protected (CDATA section).

GSL Grammar

* Here is an in-line grammar in GSL format:

<grammar type = "application/x-gsl" mode = "voice">
<I[CDATA[
[
[(new york) (big apple)] {<destination "NEW YORK"
[washington (the capital)] {<destination "WASHINGTON
]
1>

</grammar>

© Macquarie University 2004

>}
"}

GSL Grammar

* The value of the "name" attribute (destination) is set to the value

returned by the grammar.

<form>
<field name = "destination">
<prompt> Do you want to fly to New York or Washingt
<grammar type = "application/x-gsl" mode = "voice">
<|[CDATA[
[[(new york) (big apple)] {<destination "new york"

[washington (the capital)] {<destination "washington"

1>

</grammar>

© Macquarie University 2004

on? </prompt>

>}
>}

GSL Grammar at Work

<?xml version = "1.0"?>
<vxml version ="2.0">

<form>

<field name = "destination">

<prompt> Do you want to fly to New York or Washingt

<grammar type = "application/x-gsl" mode = "voice">

<I[CDATA[
[[(new york) (big apple)] {<destination "new york">
[washington (the capital)] {<destination "washignton

1>

</grammar>

© Macquarie University 2004

on? </prompt>

">}

20

GSL Grammar at Work

<catch event = "nomatch noinput">
<reprompt/>
</catch>
<filled>
<prompt> You said <value expr = "destination"/> </pr
<ffilled>
<ffield>
</form>

</vxml>

© Macquarie University 2004

ompt>

21

GSL — Yes/No Grammar

YES_NO [

[yes
yeah
yup
sure
okay
correct
right
(?(?yes that's) [right correct])
(?yesitis)
(yougotit)
(yesido)
(yesiwould)
(yes itis correct)

] {return("yes")}

© Macquarie University 2004

22

GSL — Yes/No Grammar

[no

nope
incorrect
(noway)
(noitisn't)
(?no [it's that's] not [correct right])
(?noitisn't)
(?noitis not)
(?noit's not)
(noidon't)
(noidonot)
(no i wouldn't)

] {return("no")}

]

© Macquarie University 2004

23

CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

Introduction to VoiceXML
7. VoiceXML: Mixed Initiative

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004

Dialog Styles

Mixed Initiative

Application Directed User Directed
Forms Dictation
Menus Query

Command and Control

© Macquarie University 2004

Form Filling Dialog Model

* In a form filling dialog model
the application typically prompts the caller
for discrete pieces of information
in a pre-determined order.

* In this model, the VoiceXML application mainly
consists of a number of call states
that collect input from the caller.

© Macquarie University 2004

Form Filling Dialog

Computer: Welcome to ACME Travel.

Computer: Where are you flying from?

Caller: | wanna fly from San Francisco, California.
Computer: Where do you want to go to?

Caller: To Boston, Massachusetts.

Computer: Okay, to summarize, you'd like to fly from San

Francisco, California to Boston, Massachusetts.
s that correct?
Caller: Yes.

© Macquarie University 2004

Problems

* For callers, "form filling" can become quite cumbersome.

* Especially when callers are accustomed to provide multiple pieces
of information

— in succession without interruption of intermediary prompts
—in a different order than specified by the application.
* For example:
—(A+B+()
—(B+A)+C

© Macquarie University 2004

Mixed Initiative Dialog Model

* In a mixed initiative dialog model
—the call flow
can be directed by the caller or by the application
— the application
collects pieces of information in a single call state.
* Caution: VoiceXML does not allow for true mixed-initiative utterances.
* However, it is possible to approximate this dialog style.

© Macquarie University 2004

Mixed Initiative Dialog

Computer: Welcome to ACME travel.
Computer: Please tell me your starting and destination cities.
Caller: | wanna fly from San Francisco, California

to Boston, Massachusetts.

Computer: Okay, to summarize, you'd like to fly from San
Francisco, California to Boston, Massachusetts.
Is that correct?

Caller: Yes.

© Macquarie University 2004

Mixed Initiative Dialogs in VoiceXML

* A mixed initiative dialog in VoiceXML is essentially a way to
prompt the caller for multiple pieces of information at once
have a grammar construct that allows this to happen
and then fall back on machine-directed dialog (if needed)

that sequentially walks the caller through any questions
they neglected to answer in their original response.

© Macquarie University 2004

Implementing Mixed Initiative Dialogs

* The following things need to be done:
— define subgrammars to collect each piece of information

— define a form level grammar that uses the subgrammars to
collect the information

— define a mixed initiative dialog that collects input from the caller.
* The mixed initiative dialog can be built on top of a form-filling dialog.

© Macquarie University 2004

Defining the Subgrammar

* In the ACME example, the origin and destination are similar pieces
of information:

—from San Francisco, California

— to Boston, Massachusetts

* Therefore, a single subgrammar can be defined for this data.

© Macquarie University 2004 10

Defining the Subgrammar (airports.gsl)

Airports [[(al buquerque new nexico) (a b q)]

{ return(al buquerque_nm }

[(boston massachusetts) (b o s)]
{ return(boston_na) }

[(charlotte north_carolina) (c | t)]
{ return(charlotte_nc) }

[(los angeles california) (I a x)]
{ return(l os_angel es_ca)}

[(portland oregon) (p d x)]
{ return(portland_or) }

[(san francisco california) (s f o)]
{return(san_franci sco_ca)}

[(seattle washington) (s e a)]
{return(seattle_wa) }

]

© Macquarie University 2004

Defining the Form Level Grammar

* In the next step, we need to define the form level grammar that utilizes
the Airport subgrammar.

* The caller should be able to utter sentences such as:
— | wanna fly from S F O to Boston, Massachusetts.
— I want to go to Albuquerque, New Mexico from San Antonio, Texas.
— From Cleveland, Ohio. To Portland, Oregon.

© Macquarie University 2004 12

Defining the Form Level Grammar (travel.gsl)

(?2(i [(want to) wanna] [go fly])

[(fromAirports:x) { <from$x> }

to Airports:y) { <to $y>}

fromAirports:x to Airports:y) { <from$x> <to $y> }
to Airports:y fromAirports:x) { <from$x> <to $y> }

— o~~~

Defining the Mixed Initiative Dialog

* A mixed initiative dialog in VoiceXML consists of the following parts:
— grammars defined at form level (just discussed)
—an <initial> element that prompts for form-wide information
—a field with subgrammar for each piece of information to collect
—a confirmation field.

© Macquarie University 2004 13 © Macquarie University 2004 14
E I Ml | . (] . E | . . .
mple: mple: <initial> Element
xample: Mixed Initiative xample: <initi
. N . ¢!—— designates the initial state in a mixed initiative dialog ——:
<wEml wersion="2.0": sinitial name="init":
g . . SPTOmMpt r ——
¢<!— helper script that maps city-state names to audioc tts —: p<au§io ere="wem 13w o
2?2;13&)8113: citystate. js'> please tell me your starting and destination cities
. . <~ audio:
var_c:sohj = new CityStateReader(): </prompt >
S <catch event="nomnatch noinput":
I licati o oy <audio src="wav- 04 wav":sorry. i didn't catch that. < audio:
:f__ al.:‘g::,fc‘: 1??)'3“ rypoint —: ¢<audio src="wav-11 wav">
<h?§2k]>- star please =say where wvou'd like to go to and from.
<audio src="wav-0l.wav":Welcome to ACME trawel. <~ audio: </|<:aigﬁto>
<break time="500ms"~: toh gt tch : g gonan
(thD next="#get Drigln deSt”/) wcatc, .EVED —"ncima . ncv:lll.npu DCIl:ln — |> X
<rBlosk> = = <audio src="wav- 04 wav":sorry. i didn't catch that. < audio:
e forms <a=sign name="init" expr="trus"->
<reprompt.
{l—— retrieves the origin and destination using mized initiative —:3 <£D?t9h>
<form id="get_origin dest": “he D>d'
<property name="confidencelevel" walues="0.4"-: <au 1E> L £lich d i . d d . . -
<grammar type="application-z—g=l" mode="woice" src="trawel gsl"-> </;3dig? & ight you nesd to specify your origin an estination cities.
<catch event="nomatch noinput": <audio> .
¢audio sro="wav-04 wav'rsorry. i didn't catch that < audio: fclr_example, you can =ay. from san francisco.
¢reprompt”/? california to boston massachusstts.
</catch> <7audio>
< help>
<< initial:
© Macquarie University 2004 15 © Macquarie University 2004 16

Example: Origin

{|l—— retrieve origin in case it didn't happen in initial state ——:>
<field name="origin" =lot="from":

Example: Destination

¢|l—— retrieve destination in case it didn't happen in initial =state ——>
<field name="to":
<grammnar type="application<=z—g=l" mode="voice" src="ailrport=.gsl"-:

<grammar type="applicationsx—g=l1" mode="woice" src="airports. g=l"s: <prompt> . . i
<prompt > <audio src="waw /08 wav": where do you want to go? {(Saudio:
caudio src="waw-06.wav":wvhere are you flying from?<-audioc: </DrDth>
</prompt > <filled:
<filled: <prompt)
<prompt > ¢value expr="c=sobj . .GetCSTTS(to)" >
¢<walue expr="csobj. GetCSTTS(origin)"~ > </prompt
{sprompt » < f1lled:>
< filleds <rfield>
< field>
© Macquarie University 2004 17 © Macquarie University 2004 18
" L]
. L]
Example: Confirmation Example: Move along ...
{l—— confirm origin and destination ——:>
<field name="confirm" type="boolean":
<prompt >
<audio src="wav 10 .wav":
Okay! To summarize. you'd like to fly from
<~ audio>
<prompt > < form:
<value expr="c=obj . GetCSTTS{origin)"~ >
</prompt > ¢!— move along now that origin and dest have been collected. .. ——3
<audio src="wav-05 . wav":> to <~ audioc: <form id="bookit":
<{prompt > . <block:
<wvalue expr="csobj . GetCSTTS(to) " > ¢audiorbooking your flight<-audio:
</prompt> . <goto next="#start" >
<audioris that correct?<-audio: ¢~ blocks
</prompt » ¢ sforms
¢catch event="nomatch noinput": - 1
Sorry I didn't get that. <owEml >
{reprompt >
<scatchs
<filled:
<if cond="confirm":
<{goto next="#bookit" >
celses
<clears
<s/ifx
< filled:
< field:
© Macquarie University 2004 19 © Macquarie University 2004 20

CENTRE FOR
LANGUAGE
TECHNOLOGY

MACOLARIE UNIVERSITY - SYDNEY

Introduction to VoiceXML
8. VoiceXML: Scripting

Rolf Schwitter
schwitt@ics.mq.edu.au

© Macquarie University 2004

What is JavaScript?

» JavaScript is an object-oriented scripting language.
* (lient-side JavaScript
—is an implementation of ECMAScript
—is usually embedded directly in HTML pages
—is interpreted.
* Sever-side JavaScript
—is used with Web servers such as Apache (mod_javascript)
— can access the file system and connect to relational databases
—is compiled.

© Macquarie University 2004

JavaScript and VoiceXML

* VoiceXML has very few programming features of its own.

* JavaScript is the required scripting language for VoiceXML.

* VoiceXML documents can contain JavaScripts in two contexts:
— as values of many attributes
— as arbitrary code in <script> elements.

* VoiceXML documents can refer to external JavaScripts via the
"src" attribute of the <script> element.

© Macquarie University 2004

Special Characters

* JavaScript has 3 characters which have also meaning in VoiceXML.

Character Escape sequence
< <

> &qt;

& &

* You must escape these characters or wrap them in a CDATA section.

© Macquarie University 2004

JavaScript Expressions in Attributes

Example: Path Construction

* Many VoiceXML attributes use JavaScript expressions directly.
* For instance, the "expr" attribute of elements such as
—<var>
— <field>
— <assign>
* For example:

<var name = "one" expr ="1"/>
<field name = "two" expr ="one + 1">
<assign name = "result" expr ="Math.sqrt(a)"/>

© Macquarie University 2004

* The following example assigns a value to the variable "ui_path":

<var name = "ui_path">
<assign name = "ui_path" expr = "ui/"" />

* The next assignment references "ui_path" and uses the JavaScript
concatenation operator "+":

<assign name = "intro_path" expr ="ui_path + 'welcom e.wav" />

© Macquarie University 2004

JavaScript within Script Elements

Evaluating Scripts

* A <script> element may occur
—in the <vxml> and <form> elements, or
—in executable content (in <filled>, <if>, <block>, <catch>).

* The VoiceXML <script> element does not have a language type
attribute.

© Macquarie University 2004

* Scripts in the <vxml> element are evaluated just after the docu-
ment is loaded, along with the <var> elements, in document order.

* Scripts in the <form> element are evaluated in document order,
along with <var> elements and form item variables, each time
execution moves into the <form> element.

* A <script> element in executable content is executed, like other
executable elements, as it is encountered.

© Macquarie University 2004

Accessing Variables

* Avariable declared in VoiceXML is accessible from JavaScript:

<block> <var name = "iCurrentMonth" />
<script>
var d = new Date();
iCurrentMonth = d.getUTCMonth()); // Universal Time Conversion
</script>

<prompt>
<audio expr = "ui/months/' + iCurrentMonth + '.wav" />
</prompt>

</block>

© Macquarie University 2004 9

Example: Factorial Dialog

Computer: Say a number.
Caller: 3
Computer: The factorial of 3 is 6.
This is the first factorial that has been computed.
Computer: Say a number.
Caller: 5

Computer: The factorial of 5 is 120.
The last factorial that has been computed was 5.
Computer: Say a number.

© Macquarie University 2004 10

Example: Factorial in VoiceXML

<form id = "form">
<var name = "lastresult" Computer: Say a number.
— " Thic i : : Caller: 3
expr = This is the first factorial Computer: The factorial of 3 is 6.
that has been computed."/>
Computer: Say a number.
Caller: 5
<field name = "n" type = "number"> Computer: The factorial of 5is 120.
<prompt> Say a number. </prompt> Computer: Say a number.
<grammar type = "application/srgs+xml"

src = "/grammars/number.grxml"/>

© Macquarie University 2004 1

Example: Factorial in VoiceXML

This is the first factorial that has been computed

The last factorial that has been computed was 5.

<filled>
<prompt> The factorial of <value expr ="n"/>is
<value expr = "factorial(n)"/>
<value expr = "lastresult"/>.

</prompt>
Computer: Say a number.
. o " Caller: 3
<assign name = lastresult Computer: The factorial of 3 is 6.

expr = "The last factorial This is the first factorial that has been computed.
that has been Computed Computer: Say a number.

' v Caller: 5
was' +n+"" /> Computer: The factorial of 5 is 120.
The last factorial that has been computed was 5.
<clear namelist ="n"/> Computer: Say a number.
<ffilled>
</field>
</form>

© Macquarie University 2004 12

Example: Speaking Clock

<?xml version = "1.0"?>
<vxml version ="2.0">
<form>
<var name = "hours"/>
<var name = "minutes"/>
<var name = "seconds"/>
<block>
<script>
var d = new Date();
hours = d.getHours();
minutes = d.getMinutes();
seconds = d.getSeconds();
</script>
</block>

© Macquarie University 2004

Example: Speaking Clock

<field name = "hear_another" type = "boolean">
<prompt>
The time is <value expr = "hours"/> hours,
<value expr = "minutes"/> minutes, and
<value expr = "seconds"/> seconds.
</prompt>
<prompt>
Do you want to hear another time?
</prompt>

© Macquarie University 2004

Example: Speaking Clock

<filled>

<if cond = "hear_another">
<clear/>

<[if>

</ffilled>

<[field>
</form>
</vxml>

© Macquarie University 2004

Example: JavaScript and Grammars

<rule id = "toppings" scope = "public">
<tag> $ = new Array(); </tag>
<item repeat = "1-">
<ruleref uri = "#topping"/>
<tag> $.push($topping); </tag>
</item>
</rule>

<rule id = "topping" scope = "public">
<one-of>
<item> cheese </item>
<item> ham </item>
<item> pepperoni </item>
<item> mushrooms </item>
</one-of>
</rule>

© Macquarie University 2004

Example: JavaScript String Tutorial VoiceXML and CGlI Scripting

-test.yrml - Microsoft Internet =101 x|

* The tutorial demonstrates some JavaScript string object methods. e e Vew racts Took teb : _ L3
(Jreck - () - Iﬂ |E| 0 |) Ssarch) ¢ Favorites (Y Medis {‘T| - iz =

-
Acldress [{€] retp platypus.ies.ma, ey, suf~rolfsfcgitest vl BEERE
Google - ~|| B searchweb - | §3 | FD2ssblocked fE] autcrll |] options 8

Debuy | Source | ge- | | e

Prowpt >> Welcome to the Jawa Script string tutorial.

| b

<7l version="1,0" 7= i
After each test, please say "next”™ to continue. << - <wxml version="2.0" xmins="http:/ /www.w3.org/2001/vxml">
4 - «form id="start"
- <field name="answer">
«<prompt=8ay yes or no</prompts
«<grammar src="yesno.grxml" type="application/srgs+xml" />
- «zcatch event="nomatch noinput"=

Prompt => My string is Catfish seeking the character at three

<reprompt />

returns f£. << </catchs>
- «filled=

<submit next="http://platypus.ics.mqg.edu.au/~rolfs/cgi-
™| binftestscript.py" namelist="answer" />
|)| «</filled>

</field=

</farm=

< wrmls

[&] one [[N3 Lacalintranet

17 © Macquarie University 2004

Prompt >=>= Testing "char at™ <<

all

© Macquarie University 2004

Yes/No Grammar Python Script (testscript.py)

olfs/yesno.gr=ml - Microsoft Internet Explores (o] x|
Fie Edt Vew Favorkes Tools Help ‘ w

Qe - © - %] &) 7p ‘) seach ¢ ravorses @) veda {4‘ -2 3 i
J]

#!/usr/local/bin/python

Address [&] EI=E |Lmks B .)
Gocgle - | | @ seachwed - | 0 | Sessbloced E auorl | Fdoptions £ |mp0rt cgl
. form = cgi.FieldStorage ()
- «<rule id="main" scope="public'>
- <one-ofs . " i "
e print "Content-type: text/xmin\n
</itemz
B . if (form["answer"].value =='yes'):
</fitems= H " : —_\1 "
e print "<vxml version=\"2.0\" \
i — xmins = \"http://www.w3.0rg/2001/vxmi\"> \
ST <form><block>You just said yes</block></form></vxml >"
<item>yes</items
<item>yeah</items else:
<itemsyep</iterns R .
s print "<vxml version=\"2.0\" \
e xmlns = \"http://www.w3.0rg/2001/vxmi\"> \
S <form><block>You just said no</block></form></vxml> "

<item>nots/item>
<item>nope</items
</one-ofs
</rule>
</grammarz

© Macquarie University 2004 19 © Macquarie University 2004

